Answer:
The law of conservation of mass states that mass is neither created nor destroyed but the mass of the system must remain constant over time. The total number of atoms in the reactants is equal to the total number of atoms in the product. Therefore, this chemical equation shows that energy is conserved and demonstrates the law of conservation of mass.
Answer: CrO₄⁻ and Ba²⁺
Explanation:
1) Chemical equation given:
2H⁺ + CrO₄⁻ + Ba²⁺ + 2OH⁻ → Ba²⁺ + CrO₄⁻ + 2H₂O
2) Analysis
That is an oxidation-reduction equation (some species are been oxidized and others are being reduced).
The given equation is known as total ionic equation, because it shows all the species as ions that are part of the reaction.
2) Specator ions
Spectator ions are the ions that do not change their oxidation state and are easily identified as they are the same in the reactant and product sides.
Here the ions that are the same in the reactant and product sides are:
CrO₄⁻ and Ba²⁺
3) Addtitional explanation.
Once you identify the spectator ions you can delete them from the equation to obtain the net ionic equation , which in this case turns to be:
2H⁺ + 2OH⁻ → 2H₂O
But this is not part of the question; it is some context to help you understand the use of the spectator ions concept.
Complete ionic:
Cu(aq) + 2Cl(aq) + 8O(aq) + 2Na(aq) + C(aq) + 3O(aq) = CaCO3(s) + 2Na(aq) + Cl(aq) + 4O(aq)
Net ionic:
Cu(aq) + Cl(aq) + 4O(aq) + 2Na(aq) + C(aq) + 3O(aq) = CaCO3(s)
So write everything out as IF it will dissociate in water. So everything that is aq splits but solid just floats to the bottom of the mixture. Cancel what you can (in this case the two from the ClO4 on the left of the equation cancels with the ClO4 from the right) and the 2Na cancels. Then, write out the whole solution and you are done!
Answer:
Explanation:
NaCl does not contain molecules