Answer: To determine acceleration ,Micah also needs the Time of the total trip in seconds.
Explanation:
Acceleration can be defined as rate of change of velocity.

for calculating acceleration, initial and final velocity are required in meter per second and the total time of the trip in seconds. Then acceleration is measured in meter per second square.
Thus, Micah knows that a car had a change in velocity of 15 m/s.To determine acceleration ,Micah also needs the <u>Time</u> of the total trip in seconds.
Answer:
The particle path will follow
(d) a circular path
Explanation:
When a charged particle having charge of magnitude '
' enters into a magnetic field such that its velocity vector '
' is perpendicular to the direction of the magnetic field '
', then it will experience a force, called Lorentz force (
), given by

As shown in the figure, the magnetic field is directed perpendicular to the plane and towards the plane (as shown by the circle and 'X'-sign) and the velocity vector is from left to right on the plane.
According to the property of cross-product, the Lorentz force (
) acting on the particle will be perpendicular to the instantaneous position of the particle, making the path of the particle to be a circular path,as shown in the figure.
<h3><u>Answer;</u></h3>
C) Covalent bonds are generally weaker than ionic bonds because they overlap electrons to fill their outer shell.
<h3><u>Explanation;</u></h3>
- <em><u>Covalent bond is a type of bond that results from the sharing of electrons between two non-metal atoms. </u></em>
- <em><u>Ionic bond on the other is a type of bond that results from the transfer of electrons between metal atoms and non metal atoms, where a metal atom looses electrons and a non-metal atom gains electrons.</u></em>
- <em><u>The amount of energy required to break an given bond determines how strong a particular bond is.</u></em> Ionic bonds require more energy to break as compared to covalent bond and therefore they are stronger than the covalent bonds.
Answer:
v_f =63 m/s
Explanation:
given,
starting force = 0 N
uniform rate increase to 36 N
time of action of Force = 35 s
mass of the body = 10 Kg
Speed of the object = ?
From the given data
if we plot F-t curve we will get a triangular shape
we know,
Impulse = Area between F-t curve
= (1/2) x base x height
= 0.5 x 35 x 36
= 630 N.s
now use Impulse-momentum theorem
Impulse = change in momentum
630 = 10 x (v_f - vi)
630 = 10 x (v_f - 0)
v_f =63 m/s
Speed of the object at 35 sec is equal to v_f =63 m/s
The total gauge pressure at the bottom of the cylinder would
simply be the sum of the pressure exerted by water and pressure exerted by the
oil.
The formula for calculating pressure in a column is:
P = ρ g h
Where,
P = gauge pressure
ρ = density of the liquid
g = gravitational acceleration
h = height of liquid
Adding the two pressures will give the total:
P total = (ρ g h)_water + (ρ g h)_oil
P total = (1000 kg / m^3) (9.8 m / s^2) (0.30 m) + (900 kg /
m^3) (9.8 m / s^2) (0.4 - 0.30 m)
P total = 2940 Pa + 882 Pa
P total = 3,822 Pa
Answer:
The total gauge
pressure at the bottom is 3,822 Pa.