Answer:
Explanation:
Speed is defined as the rate at which an object covers a particular distance. So the formula for determining speed is given as the ratio of distance to time taken for covering that distance.
Speed = Distance/Time
As here the distance is given in km units and time in s units, so the units of any one parameter should be changed. Since we know that speed of sound is always about 300 m/s. So it is better to convert the unit of distance from km to m.
Hence, now the distance traveled by the noise is 2000 m and time taken is 5.8 s.
So the speed of noise = Distance/Time = 2000/5.8=345 m/s.
Thus, the speed of noise is slightly greater than the speed of sound and it is found to be 345 m/s.
Answer:
The heat loss per unit length is 
Explanation:
From the question we are told that
The outer diameter of the pipe is 
The thickness is
The temperature of water is
The outside air temperature is 
The water side heat transfer coefficient is 
The heat transfer coefficient is 
The heat lost per unit length is mathematically represented as
![\frac{Q}{L} = \frac{2 \pi (T - Ta)}{ \frac{ln [\frac{d}{D} ]}{z_1} + \frac{ln [\frac{d}{D} ]}{z_2}}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%7D%7BL%7D%20%20%20%3D%20%5Cfrac%7B2%20%5Cpi%20%28T%20-%20Ta%29%7D%7B%20%5Cfrac%7Bln%20%5B%5Cfrac%7Bd%7D%7BD%7D%20%5D%7D%7Bz_1%7D%20%20%2B%20%20%5Cfrac%7Bln%20%5B%5Cfrac%7Bd%7D%7BD%7D%20%5D%7D%7Bz_2%7D%7D)
Substituting values
![\frac{Q}{L} = \frac{2 * 3.142 (363 - 263)}{ \frac{ln [\frac{0.104}{0.002} ]}{300} + \frac{ln [\frac{0.104}{0.002} ]}{20}}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%7D%7BL%7D%20%20%20%3D%20%5Cfrac%7B2%20%2A%203.142%20%28363%20-%20263%29%7D%7B%20%5Cfrac%7Bln%20%5B%5Cfrac%7B0.104%7D%7B0.002%7D%20%5D%7D%7B300%7D%20%20%2B%20%20%5Cfrac%7Bln%20%5B%5Cfrac%7B0.104%7D%7B0.002%7D%20%5D%7D%7B20%7D%7D)


There is no factor on your list of choices that has any effect.
<span>the most important personality trait the coach should demonstrate to achieve a goal is </span>persistence
To solve this problem it is necessary to apply the concepts related to the magnetic field.
According to the information, the magnetic field INSIDE the plates is,

Where,
Permeability constant
Electromotive force
r = Radius
From this deduction we can verify that the distance is proportional to the field

Then the distance relationship would be given by




On the outside, however, it is defined by

Here the magnetic field is inversely proportional to the distance, that is

Then,



