Answer:
less than 20580 N
Explanation:
According to the newton's second law of motion
Force = mass * acceleration
(assuming gravitational acceleration =9.8 m/s2 )
acceleration = 30*9.8 = 294 m/s2
acting Force = 70 * 294
= 20580 N
Since the acceleration was less than 30g , acting force should also be less than 20580 N
<span>Electric current is produced when a changing magnetic field is applied to a conductor, an electromotive force (EMF) is produced, thus causing a suitable path.</span>
Answer:
1. E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
Explanation:
According to the problem, Q is the charge on the non conducting sphere of radius R. Let ρ be the volume charge density of the non conducting sphere.
As shown in the figure, let r be the radius of the sphere inside the bigger non conducting sphere. Hence, the charge on the sphere of radius r is :
Q₁ = ∫ ρ dV
Here dV is the volume element of sphere of radius r.
Q₁ = ρ x 4π x ∫ r² dr
The limit of integration is from 0 to r as r is less than R.
Q₁ = (4π x ρ x r³ )/3
But volume charge density, ρ = 
So, 
Applying Gauss law of electrostatics ;
∫ E ds = Q₁/ε₀
Here E is electric field inside the sphere and ds is surface element of sphere of radius r.
Substitute the value of Q₁ in the above equation. Hence,
E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
Answer:
No
Explanation:
Not all metals stick to magnets. Like aluminum. if you were to stick a magnet on to an aluminum it would fall off.