Answer:
i dont know
Explanation:im sorry to do this to you but you dont have to watch ads if you answer questions
Answer:
7.55 km/s
Explanation:
The force of gravity between the Earth and the Hubble Telescope corresponds to the centripetal force that keeps the telescope in uniform circular motion around the Earth:
where
is the gravitational constant
is the mass of the telescope
is the mass of the Earth
is the distance between the telescope and the Earth's centre (given by the sum of the Earth's radius, r, and the telescope altitude, h)
v = ? is the orbital velocity of the Hubble telescope
Re-arranging the equation and substituting numbers, we find the orbital velocity:
Answer:
(a) The horizontal ground reaction force
(b) The vertical ground reaction force
(c) The resultant ground reaction force
Explanation:
Given
John mass , m = 65 kg
Horizontal acceleration ,
Vertical acceleration ,
(a) Using Newton's 2nd law in horizontal direction
=>
Thus the horizontal ground reaction force
(b) Using Newton's 2nd law in vertical direction
=>
=>
Thus the vertical ground reaction force
(c) Resultant ground reaction force is
=>
=>
Thus the resultant ground reaction force
<h2>MARK BRAINLIEST</h2>
For this assignment, you will develop several models that show how light waves and mechanical waves are reflected, absorbed, or transmitted through various materials. For each model, you will write a brief description of the interaction between the wave and the material. You will also compose two <u><em>typewritten</em></u> paragraphs. The first will compare and contrast light waves interacting with different materials. The second will explain why materials with certain properties are well suited for particular functions.
<h2><u>Background Information</u></h2>
A wave is any disturbance that carries energy from one place to another. There are two different types of waves: mechanical and electromagnetic. A mechanical wave carries energy through matter. Energy is transferred through vibrating particles of matter. Examples of mechanical waves include ocean waves, sound waves, and seismic waves. Like a mechanical wave, an electromagnetic wave can also carry energy through matter. However, unlike a mechanical wave, an electromagnetic wave does not need particles of matter to carry energy. Examples of electromagnetic waves include microwaves, visible light, X-rays, and radiation from the Sun.