If the crate is moving along the floor in the same direction with a constant speed, it is in dynamic equilibrium. Equilibrium means there is no net force acting on the crate.
Since there is no net force on the crate, there must be a friction force on the crate equal in magnitude and opposite in direction to the applied horizontal force. Therefore the force of friction acting on the crate is 100N.
If the acceleration is constant (negative or positive) the instantaneous acceleration cannot be
Average acceleration: [final velocity - initial velocity ] /Δ time
Instantaneous acceleration = d V / dt =slope of the velocity vs t graph
If acceleration is increasing, the slope of the curve at one moment will be higher than the average acceleration.
If acceleration is decreasing, the slope of the curve at one moment will be lower than the average acceleration.
If acceleration is constant, the acceleration at any moment is the same, then only at constant accelerations, the instantaneuos acceleration is the same than the average acceleration.
Constant zero acceleration is a particular case of constant acceleration, so at constant zero acceleration the instantaneous accelerations is the same than the average acceleration: zero. But, it is not true that only at zero acceleration the instantaneous acceleration is equal than the average acceleration.
That is why the only true option and the answer is the option D. only at constant accelerations.
Answer:
The work done by friction was 
Explanation:
Given that,
Mass of car = 1000 kg
Initial speed of car =108 km/h =30 m/s
When the car is stop by brakes.
Then, final speed of car will be zero.
We need to calculate the work done by friction
Using formula of work done



Put the value of m and v



Hence, The work done by friction was 
Answer:
87.5 m/s
Explanation:
The speed of a wave is given by

where
v is the wave speed
is the wavelength
f is the frequency
In this problem, we have
is the frequency
is the wavelength
Substituting into the equation, we find
