Answer:
32.46m/s
Explanation:
Hello,
To solve this exercise we must be clear that the ball moves with constant acceleration with the value of gravity = 9.81m / S ^ 2
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are the follow

Where
Vf = final speed
Vo = Initial speed
=7.3m/S
A = g=acceleration
=9.81m/s^2
X = displacement
=51m}
solving for Vf

the speed with the ball hits the ground is 32.46m/s
Answer:
One would need to know how far apart the towns are:
T = SA / 40 time it takes for first cyclist to travel S1
T = SB / 60 time it takes for cyclist B to travel distance S2
SA + SB = S the distance between the towns
SB = 60 / 40 SA = 1.5 SA
SA + 1.5 SA = S
S = 2.5 SA where cyclist travels distance SA
The time will depend on the separation of the towns.
Explanation:
The given data is as follows.
F = 3.2 N, m = 18.2 kg,
t = 0.82 sec
(a) Formula for impulse is as follows.
I = Ft = 
Ft = 
or, 
Putting the given values into the above formula as follows.

= 
= 0.144 m/s
Therefore, final velocity of the mass if it is initially at rest is 0.144 m/s.
(b) When velocity is 1.85 m/s to the left then, final velocity of the mass will be calculated as follows.
Ft = 
or, 
=
= -1.705 m/s
Hence, we can conclude that the final velocity of the mass if it is initially moving along the x-axis with a velocity of 1.85 m/s to the left is 1.705 m/s towards the left.
Answer:
d
Explanation:
you have to divide by the square root and then use the factorial to multiply
3.51 × 10^-7m
Explanation:
Refractive index = wavelength of the light in air ÷ wavelength in the medium
wavelength in the medium = wavelength of the light in air ÷ refractive index
= 5.4 * 10^-7 ÷ 1.54
= 3.51 × 10^-7m