Answer:
Explanation:
L 1: front radius 950 mm, rear radius 2700 mm, refractive index 1.528;
We shall use lens maker's formula , that is
1/f = (μ-1) ( 1/R₁ - 1/R₂) , μ is refractive index of the lens , R₁ and R₂ are radius of curvature of front and rear curved surface.
1/f₁ = (1.528-1)( 1/950 + 1/2700)
f₁ = 1331 mm
L2: front radius 535 mm, rear radius 500 mm, refractive index 1.550.
1/f₂ = (1.550-1)( 1/535 + 1/500)
f₂ = 470 mm
largest angular magnification possible
= f₁ /f₂
= 1331 / 470
= 2.83 ( approx )
Length between two lenses
=1331 +470
= 1801 mm
= 1.8 m Ans
Answer:
V = 2.05× 10⁸ m/s
Explanation:
We are given;
The angle of the incidence; i = 40°
Angle of refraction; (r) = 26°
For us to find the speed of light in the material, we'll use Snell's law
From shell's law, we know that;
n = sin i/sin r = speed of light in air/Speed of light in the medium
Now, speed of light in air = 3 × 10⁸ m/s
Lets speed of light in medium be V
Thus, plugging in the relevant values to obtain;
Sin 40°/sin 26° = 3×10⁸/V
Let's make V the subject;
V = 3 × 10⁸× sin 26°/sin 40°
V = 2.05× 10⁸ m/s
Answer:
Sorry to tell you this but there’s no answer for that
Explanation:
Answer:
Explanation:
We shall find the final velocity of aircraft with respect to aircraft carrier using the following relation.
v² = u² + 2as
v² = 0² + 2 x 59 x 97
v² = 11446
v = 107 m /s
velocity of aircraft carrier = 1.852 x 26 = 48.152 km/h
= 48.152 x 1000 / (60 x 60) m/s
= 13.37 m /s
This velocity of aircraft carrier will be added to the velocity of aircraft .
So absolute velocity of aircraft = 107 m /s + 13.37 m/s
= 120.37 m/s
Answer:
the static charge is not always distributed on the surface of the conductor, there are also charges in the volume but of lesser magnitude
Explanation:
In this hypothetical system the electric force is of type
F =
in this case the force decays to zero much faster,
if we call Fo the force of Coulomb's law
F₀ = 
assuming the constant k is the same
the relationship between the two forces is
F / F₀ = 1 / r
F = F₀ / r
when analyzing this expression the force decays much faster to zero.
In an electric conductor, charges of the same sign may not feel any repulsive force from other charges that are at a medium distance, so there is a probability that some charges are distributed in the volume of the material, this does not happen with coulomb's law
Consequently, the static charge is not always distributed on the surface of the conductor, there are also charges in the volume but of lesser magnitude