X ≤ −3 or x > 3
inequality form
Answer:
0.16 micron per day
Explanation:
Given:
The initial crack length, a₁ = 0.1 micron = 0.1 × 10⁻⁶ m
Initial tensile stress, σ₁ = 120 MPa
Final stress = 30 MPa
now from Griffith's equation, we have
![\sigma=[\frac{G_cE}{\pi\ a}]^\frac{1}{2}](https://tex.z-dn.net/?f=%5Csigma%3D%5B%5Cfrac%7BG_cE%7D%7B%5Cpi%5C%20a%7D%5D%5E%5Cfrac%7B1%7D%7B2%7D)
where,
Gc and E are the material constants
now,
for the initial stage
........{1}
and for the final case
............{2}
on dividing 1 by 2, we get
![\frac{120}{30}=[\frac{a_2}{0.1\times10^{-6}}]^\frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B120%7D%7B30%7D%3D%5B%5Cfrac%7Ba_2%7D%7B0.1%5Ctimes10%5E%7B-6%7D%7D%5D%5E%5Cfrac%7B1%7D%7B2%7D)
or
a₂ = 4² × 0.1 × 10⁻⁶ m
or
a₂ = 1.6 micron
Now,
the change from 0.1 micron to 1.6 micron took place in 10 days
therefore, the rate at which the crack is growing = 
or
average rate of change of crack = 0.16 micron per day
Answer:
Heat required =7126.58 Btu.
Explanation:
Given that
Mass m=20 lb
We know that
1 lb =0.45 kg
So 20 lb=9 kg
m=9 kg
Ice at -15° F and we have to covert it at 200° F.
First ice will take sensible heat at up to 32 F then it will take latent heat at constant temperature and temperature will remain 32 F.After that it will convert in water and water will take sensible heat and reach at 200 F.
We know that
Specific heat for ice 
Latent heat for ice H=336 KJ/kg
Specific heat for ice 
We know that sensible heat given as

Heat for -15F to 32 F:


Q=858.69 KJ
Heat for 32 Fto 200 F:


Q=6330.74 KJ
Total heat=858.69 + 336 +6330.74 KJ
Total heat=7525.43 KJ
We know that 1 KJ=0.947 Btu
So 7525.43 KJ=7126.58 Btu
So heat required to covert ice into water is 7126.58 Btu.
Answer:
elongation of the brass rod is 0.01956 mm
Explanation:
given data
length = 5 cm = 50 mm
diameter = 4.50 mm
Young's modulus = 98.0 GPa
load = 610 N
to find out
what will be the elongation of the brass rod in mm
solution
we know here change in length formula that is express as
δ =
................1
here δ is change in length and P is applied load and A id cross section area and E is Young's modulus and L is length
so all value in equation 1
δ =
δ =
δ = 0.01956 mm
so elongation of the brass rod is 0.01956 mm