1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BabaBlast [244]
3 years ago
5

A welding rod with κ = 30 (Btu/hr)/(ft ⋅ °F) is 20 cm long and has a diameter of 4 mm. The two ends of the rod are held at 500 °

C and 50 °C. (a) In the units of Btu and J, how much heat flows along the rod each second? (b) What is the temperature of the welding rod at its midpoint?
Engineering
1 answer:
SOVA2 [1]3 years ago
4 0

Answer:

In Btu:

Q=0.001390 Btu.

In Joule:

Q=1.467 J

Part B:

Temperature at midpoint=274.866 C

Explanation:

Thermal Conductivity=k=30  (Btu/hr)/(ft ⋅ °F)= \frac{30}{3600} (Btu/s)/(ft.F)=8.33*10^{-3}  (Btu/s)/(ft.F)

Thermal Conductivity is SI units:

k=30(Btu/hr)/(ft.F) * \frac{1055.06}{3600*0.3048*0.556} \\k=51.88 W/m.K

Length=20 cm=0.2 m= (20*0.0328) ft=0.656 ft

Radius=4/2=2 mm =0.002 m=(0.002*3.28)ft=0.00656 ft

T_1=500 C=932 F

T_2=50 C= 122 F

Part A:

In Joules (J)

A=\pi *r^2\\A=\pi *(0.002)^2\\A=0.00001256 m^2

Heat Q is:

Q=\frac{k*A*(T_1-T_2)}{L} \\Q=\frac{51.88*0.000012566*(500-50}{0.2}\\ Q=1.467 J

In Btu:

A=\pi *r^2\\A=\pi *(0.00656)^2\\A=0.00013519 m^2

Heat Q is:

Q=\frac{k*A*(T_1-T_2)}{L} \\Q=\frac{8.33*10^{-3}*0.00013519*(932-122}{0.656}\\ Q=0.001390 Btu

PArt B:

At midpoint Length=L/2=0.1 m

Q=\frac{k*A*(T_1-T_2)}{L}

On rearranging:

T_2=T_1-\frac{Q*L}{KA}

T_2=500-\frac{1.467*0.1}{51.88*0.00001256} \\T_2=274.866\ C

You might be interested in
Which investigative process is most helpful for learning about past societies?
tatuchka [14]

Answer: think it A

Explanation: makes

6 0
3 years ago
For the following conditions determine whether a CMFR or a PFR is more efficient in removing a reactive compound from the waste
andrew11 [14]

Answer:

The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.

Xₚբᵣ = 0.632

X꜀ₘբᵣ = 0.5

Xₚբᵣ > X꜀ₘբᵣ

Explanation:

From the reaction rate coefficient, it is evident the reaction is a first order reaction

Performance equation for a CMFR for a first order reaction is

kτ = (X)/(1 - X)

k = reaction rate constant = 0.05 /day

τ = Time constant or holding time = V/F₀

V = volume of reactor = 280 m³

F₀ = Flowrate into the reactor = 14 m³/day

X = conversion

k(V/F₀) = (X)/(1 - X)

0.05 × (280/14) = X/(1 - X)

1 = X/(1 - X)

X = 1 - X

2X = 1

X = 1/2 = 0.5

For the PFR

Performance equation for a first order reaction is given by

kτ = In [1/(1 - X)]

The parameters are the same as above,

0.05 × (280/14) = In (1/(1-X)

1 = In (1/(1-X))

e = 1/(1 - X)

2.718 = 1/(1 - X)

1 - X = 1/2.718

1 - X = 0.3679

X = 1 - 0.3679

X = 0.632

The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.

3 0
3 years ago
Write a program that prompts for a line of text and then transforms the text based on chosen actions. Actions include reversing
nlexa [21]

Answer:

public class TextConverterDemo

{

//Method definition of action1337

public static String action1337(String current)

{

//Replace each L or l with a 1 (numeral one)

 current = current.replace('L', '1');

 current = current.replace('l', '1');

 

 //Replace each E or e with a 3 (numeral three)

 current = current.replace('E', '3');

 current = current.replace('e', '3');

 //Replace each T or t with a 7 (numeral seven)

 current = current.replace('T', '7');

 current = current.replace('t', '7');

 //Replace each O or o with a 0 (numeral zero)

 current = current.replace('O', '0');

 current = current.replace('o', '0');

 

//Replace each S or s with a $ (dollar sign)

 current = current.replace('S', '$');

 current = current.replace('s', '$');

 return current;

}

//Method definition of actionReverse

//This method is used to reverses the order of

//characters in the current string

public static String actionReverse(String current)

{

 //Create a StringBuilder's object

 StringBuilder originalStr = new StringBuilder();

 //Append the original string to the StribgBuilder's object

 originalStr.append(current);

 //Use reverse method to reverse the original string

 originalStr = originalStr.reverse();

 

 //return the string in reversed order

 return originalStr.toString();

}

//Method definition of main

public static void main(String[] args)

{

    //Declare variables

 String input, action;

 

 //Prompt the input message

 System.out.println("Welcome to the Text Converter.");

 System.out.println("Available Actions:");

 System.out.println("\t1337) convert to 1337-speak");

 System.out.println("\trev) reverse the string");

 System.out.print("Please enter a string: ");

   

 //Create a Scanner class's object

 Scanner scn = new Scanner(System.in);

 

 //Read input from the user

 input = scn.nextLine();

 do

 {

  /*Based on the action the user chooses, call the appropriate

   * action method. If an unrecognized action is entered then

   * the message "Unrecognized action." should be shown on a

   * line by itself and then the user is prompted again just

   * as they were when an action was performed.

   * */

  System.out.print("Action (1337, rev, quit): ");

  action = scn.nextLine();

  if (action.equals("1337"))

  {

   input = action1337(input);

   System.out.println(input);

  } else if (action.equals("rev"))

  {

   input = actionReverse(input);

   System.out.println(input);

  } else if (!action.equals("quit"))

  {

   System.out.println("Unrecognized action.");

  }

 } while (!action.equals("quit"));

 System.out.println("See you next time!");

 scn.close();

}

}

7 0
3 years ago
How to design a solar panel<br>​
artcher [175]

Answer:

#1) Find out how much power you need

#2 Calculate the amount of batteries you need.

#3 Calculate the number of solar panels needed for your location and time of year.

#4 Select a solar charge controller.

#5 Select an inverter.

#6 Balance of system

Explanation: To design solar panel, consider the following steps

1.) Find the power consumption demands

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as follows:

Calculate total Watt-hours per day for each appliance used.

 Add the Watt-hours needed for all appliances together to get the total Watt-hours per day which must be delivered to the appliances.

Calculate total Watt-hours per day needed from the PV modules.

Multiply the total appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total Watt-hours per day which must be provided by the panels.

2. Size the PV modules

Different size of PV modules will produce different amount of power. To find out the sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced depends on size of the PV module and climate of site location. We have to consider panel generation factor which is different in each site location. For Thailand, the panel generation factor is 3.43. To determine the sizing of PV modules, calculate as follows:

2.1 Calculate the total Watt-peak rating needed for PV modules

Divide the total Watt-hours per day needed from the PV modules (from item 1.2) by 3.43 to get the total Watt-peak rating needed for the PV panels needed to operate the appliances.

Calculate the number of PV panels for the system

Divide the answer obtained in item 2.1 by the rated output Watt-peak of the PV modules available to you. Increase any fractional part of result to the next highest full number and that will be the 

number of PV modules required.

Result of the calculation is the minimum number of PV panels. If more PV modules are installed, the system will perform better and battery life will be improved. If fewer PV modules are used, the system may not work at all during cloudy periods and battery life will be shortened.

3. Inverter sizing

An inverter is used in the system where AC power output is needed. The input rating of the inverter should never be lower than the total watt of appliances. The inverter must have the same nominal voltage as your battery.

For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. The inverter size should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting.

For grid tie systems or grid connected systems, the input rating of the inverter should be same as PV array rating to allow for safe and efficient operation.

4. Battery sizing

The battery type recommended for using in solar PV system is deep cycle battery. Deep cycle battery is specifically designed for to be discharged to low energy level and rapid recharged or cycle charged and discharged day after day for years. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. To find out the size of battery, calculate as follows:

     4.1 Calculate total Watt-hours per day used by appliances.

     4.2 Divide the total Watt-hours per day used by 0.85 for battery loss.

     4.3 Divide the answer obtained in item 4.2 by 0.6 for depth of discharge.

     4.4 Divide the answer obtained in item 4.3 by the nominal battery voltage.

     4.5 Multiply the answer obtained in item 4.4 with days of autonomy (the number of days that you need the system to operate when there is no power produced by PV panels) to get the required Ampere-hour capacity of deep-cycle battery.

Battery Capacity (Ah) = Total Watt-hours per day used by appliancesx Days of autonomy

(0.85 x 0.6 x nominal battery voltage)

5. Solar charge controller sizing

The solar charge controller is typically rated against Amperage and Voltage capacities. Select the solar charge controller to match the voltage of PV array and batteries and then identify which type of solar charge controller is right for your application. Make sure that solar charge controller has enough capacity to handle the current from PV array.

For the series charge controller type, the sizing of controller depends on the total PV input current which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).

According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.3

Solar charge controller rating = Total short circuit current of PV array x 1.3

5 0
3 years ago
______ are an idication that your vehicle may be developing a cooling system problem.
iris [78.8K]

Answer:

The temperature gauge showing that the vehicle has been running warmer or has recently began to have issues from overheating is  an idication that your vehicle may be developing a cooling system problem.

Explanation:

8 0
3 years ago
Other questions:
  • The yield strength of mild steel is 150 MPa for an average grain diameter of 0.038 mm ; yield strength is 250 MPa for average gr
    15·1 answer
  • Explain what entropy is in relation to the second law of thermodynamics?
    9·1 answer
  • How are isometric drawings and orthographic drawings similar?
    10·1 answer
  • Which utility program reads an assembly language source file and produces an object file?
    6·1 answer
  • A 150-lbm astronaut took his bathroom scale (a spring scale) and a beam scale (compares masses) to the moon where the local grav
    13·1 answer
  • I need solution fast plesss​
    9·1 answer
  • Which of these is an example of a service job?
    7·1 answer
  • Yall pls help me out
    7·1 answer
  • When an output gear is larger than the input gear the greater ratio is greater than 1 T or F​
    9·1 answer
  • Label each of the line types in the drawing below. ( will not mark you brainlest or whatever if you don't at least try to help)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!