1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bekas [8.4K]
3 years ago
11

The difference in potential energy between an electron at the negative terminal and one at the positive terminal is called the _

__________________________.
Will mark brainliest. Just get me some answers, and QUICK
Engineering
1 answer:
tensa zangetsu [6.8K]3 years ago
5 0

Answer:

potential difference

Explanation:

voltage = potential difference

dont confuse potential energy with electrical potential though.

You might be interested in
2. How were scientists able to access a car's computer system?
cupoosta [38]
Ans:

2. The wireless hacking was done by taking advantage of the sensors inside each tire that broadcast a brief radio signal every 60 to 90 seconds. The signal tells one of the car's computer systems the pressure of each.

7 0
3 years ago
1) Pareto charts are used to: A) identify inspection points in a process. B) outline production schedules. C) organize errors, p
zloy xaker [14]

Answer:

E) Please see below as the answer is self -explanatory.

Explanation:

The pareto chart, is used in quality control, and is a combined type of graph, that uses a line-type curve to denote the cumulative percentages of the different types of defects found in a sample (so the maximum value is 100%)

Also, it features a bar chart, which shows the relative occurrence of the different values (as in a histogram) which allows to find easily which defects are more relevant ones, alerting in this way about unacceptable deviations in the manufacturing process (if we are producing a good under given quality standards, for instance).

4 0
3 years ago
A large well-mixed tank of unknown volume, open to the atmosphere initially, contains pure water. The initial height of the solu
trasher [3.6K]

Answer:

The exact time when the sample was taken is = 0.4167337 hr

Explanation:

The diagram of a sketch of the tank is shown on the first uploaded image

Let A denote the  first inlet

Let B denote the second inlet

Let C denote the single outflow from the tank

From the question we are given that the diameter of A is = 1 cm = 0.01 m

                              Area of  A is  = \frac{\pi}{4}(0.01)^{2} m^{2}

                                                    = 7.85 *10^{-5}m^{2}

Velocity of liquid through A = 0.2 m/s

  The rate at which the liquid would flow through the first inlet in terms of volume  = \frac{Volume of Inlet }{time} = Velocity * Area i.e is m^{2} * \frac{m}{s}   = \frac{m^{3}}{s}

             = 0.2 *7.85*10^{-5} \frac{m^{3}}{s}

  The rate at which the liquid would flow through the first inlet in terms of mass of the liquid = mass of liquid × the rate of flow in terms of volume

                              =  1039.8 * 0.2 * 7.85 *10^{-5} Kg/s

                              = 0.016324 \frac{Kg}{s}

From the question the diameter of B = 2 cm = 0.02 m

                                           Area of B = \frac{\pi}{4} * (0.02)^{2} m^{2} = 3.14 * 10^{-4}m^{2}

                                     Velocity of liquid through B = 0.01 m/s

The rate at which the liquid would flow through the first inlet in terms of volume  = \frac{Volume of Inlet }{time} = Velocity * Area i.e is m^{2} * \frac{m}{s}   = \frac{m^{3}}{s}

             = 3.14*10^{-4} *0.01 \frac{m^{3}}{s}

The rate at which the liquid would flow through the second inlet in terms of mass of the liquid = mass of liquid × the rate of flow in terms of volume

                              = 1053 * 3.14*10^{-6} \frac{Kg}{s}

                              = 0.00330642 \frac{Kg}{s}

From the question The flow rate in term of volume of the outflow at the time of measurement is given as  = 0.5 L/s

And also from the question the mass of  potassium chloride  at the time of measurement is given as 13 g/L

So The rate at which the liquid would flow through the outflow in terms of mass of the liquid = mass of liquid × the rate of flow in terms of volume

                              = 13\frac{g}{L} * 0.5 \frac{L}{s}

                              =  \frac{6.5}{1000}\frac{Kg}{s}       Note (1 Kg = 1000 g)

                              = 0.0065 kg/s

Considering potassium chloride

         Let denote the  rate at which liquid flows in terms of mass as   as \frac{dm}{dt} i.e change in mass with respect to time hence

           Input(in terms of mass flow ) - output(in terms of mass flow ) = Accumulation in the Tank(in terms of mass flow )

         

      (0.016324 + 0.00330642) - 0.0065 = \frac{dm}{dt}

          \int\limits {\frac{dm}{dt} } \, dx  =\int\limits {0.01313122} \, dx

      => 0.01313122 t = (m - m_{o})

  From the question  (m - m_{o})  is given as = 19.7 Kg

Hence the time when the sample was taken is given as

               0.01313122 t = 19.7 Kg

      =>  t = 1500.2414 sec

            t = .4167337 hours (1 hour = 3600 seconds)

5 0
4 years ago
Mike is involved in developing the model building codes that various states and local authorities in the United States adopt. He
Lyrx [107]
<h3>Answer:</h3>

Mike is involved in developing the model building codes that various states and local authorities in the United States adopt. He works with the <u>Workers</u> , which consists of members who are building code officials and building safety professionals.

8 0
3 years ago
Define Viscosity. What are the main differences between viscous and inviscid flows?
Evgesh-ka [11]

1. Define <em>Viscosity</em>

In physics, <em>Viscosity</em> refers to the level of resistance of a fluid to flow due to internal friction, in other words, viscosity is the result of the magnitude of internal friction in a fluid, as measured by the force per unit area resisting uniform flow. For example, the honey is a fluid with high viscosity while the water has low viscosity.

What are the main differences between viscous and inviscid flows?

Viscous flows are flows that has a thick, sticky consistency between solid and liquid, contain and conduct heat, does not have a rest frame mass density and whose motion at a fixed point always remains constant. Inviscid flows, on the other hand, are flows characterized for having zero viscosity (it does not have a thick, sticky consistency), for not containing or conducting heat, for the lack of steady flow and for having a rest frame mass density

Furthermore, viscous flows are much more common than inviscid flows, while this latter is often considered an idealized model since helium is the only fluid that can become inviscid.

5 0
3 years ago
Other questions:
  • Air enters the compressor of an ideal cold air-standard Brayton cycle at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The co
    11·1 answer
  • The screw of shaft straightener exerts a load of 30 as shown in Figure . The screw is square threaded of outside diameter 75 mm
    5·1 answer
  • A worker standing on a freshly mopped floor is
    7·1 answer
  • Using phasors, the value of 37 sin 50t + 30 cos(50t – 45°) is _________ cos(50t+(_____°)). Please report your answer so the magn
    5·1 answer
  • Consider a 0.15-mm-diameter air bubble in a liquid. Determine the pressure difference between the inside and outside of the air
    10·1 answer
  • Show that -40 F is approximately equal to -40 C.
    12·1 answer
  • Describe the relationship between atomic structure and Youngs' modulus?
    15·1 answer
  • Estimate the luminosity of a 3 -solar-mass main-sequence star; of a 9 -solar-mass main-sequence star. Can you easily estimate th
    5·1 answer
  • It is better to know or not to know?​
    6·2 answers
  • The ratio between the modulating signal voltage and the carrier voltage is called?.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!