Answer:
R min = 28.173 ohm
R max = 1.55 ×
ohm
Explanation:
given data
capacitor = 0.227 μF
charged to 5.03 V
potential difference across the plates = 0.833 V
handled effectively = 11.5 μs to 6.33 ms
solution
we know that resistance range of the resistor is express as
V(t) =
...........1
so R will be
R =
....................2
put here value
so for t min 11.5 μs
R = 
R min = 28.173 ohm
and
for t max 6.33 ms
R max =
R max = 1.55 ×
ohm
Answer:
The pressure difference across hatch of the submarine is 3217.68 kpa.
Explanation:
Gauge pressure is the pressure above the atmospheric pressure. If we consider gauge pressure for finding pressure differential then no need to consider atmospheric pressure as they will cancel out. According to hydrostatic law, pressure varies in the z direction only.
Given:
Height of the hatch is 320 m
Surface gravity of the sea water is 1.025.
Density of water 1000 kg/m³.
Calculation:
Step1
Density of sea water is calculated as follows:

Here, density of sea water is
, surface gravity is S.G and density of water is
.
Substitute all the values in the above equation as follows:


kg/m³.
Step2
Difference in pressure is calculated as follows:


pa.
Or

kpa.
Thus, the pressure difference across hatch of the submarine is 3217.68 kpa.
Answer:
a) 

b)

Explanation:
Given that:
diameter d = 12 in
thickness t = 0.25 in
the radius = d/2 = 12 / 2 = 6 in
r/t = 6/0.25 = 24
24 > 10
Using the thin wall cylinder formula;
The valve A is opened and the flowing water has a pressure P of 200 psi.
So;




b)The valve A is closed and the water pressure P is 250 psi.
where P = 250 psi






The free flow body diagram showing the state of stress on a volume element located on the wall at point B is attached in the diagram below
What is the question? It looks like a statement...