Answer:
The model, called the kinetic theory of gases, assumes that the molecules are very small relative to the distance between molecules. ... The molecules are in constant random motion, and there is an energy (mass x square of the velocity) associated with that motion. The higher the temperature, the greater the motion.
Answer:
0.911 atm
Explanation:
In this problem, there is no change in volume of the gas, since the container is sealed.
Therefore, we can apply Gay-Lussac's law, which states that:
"For a fixed mass of an ideal gas kept at constant volume, the pressure of the gas is proportional to its absolute temperature"
Mathematically:

where
p is the gas pressure
T is the absolute temperature
For a gas undergoing a transformation, the law can be rewritten as:

where in this problem:
is the initial pressure of the gas
is the initial absolute temperature of the gas
is the final temperature of the gas
Solving for p2, we find the final pressure of the gas:

If an experiment is conducted such that an applied force is exerted on an object, a student could use the graph to determine the net work done on the object.
The graph of the net force exerted on the object as a function of the object’s distance traveled is attached below.
- A student could use the graph to determine the net work done on the object by Calculating the area bound by the line of best fit and the horizontal axis from 0m to 5m
For more information on work done, visit
brainly.com/subject/physics
Answer:
Answer is in the following attachment.
Explanation: