According to Ideal gasTo solve this problem, the fastest relationship allows us to observe the proportionality between the two variables would be the one expressed in the ideal gas equation, which is

Here
P = Pressure
V = Volume
N = Number of moles
R = Gas constant
T = Temperature
We can see that the pressure is proportional to the temperature, then

This relationship can be extrapolated to all the scenarios in which these two variables are related. As the pressure increases the temperature increases. The same goes for the pressure in the atmosphere, for which an increase in this will generate an increase in temperature. This variable can be observed in areas of different altitude. At higher altitude lower atmospheric pressure and lower temperature.
Answer:
FG and FP
Explanation:
Gravitational Force(FG) because the box is being pulled down and a resistance force pushing up because he is pushing(FP) up on the box.
I hope this helps!
Force is defined as the rate of change of momentum.
The initial amount of momentum is

because water stops when it hit the wall total change of momentum must be

.
Now let's calculate the force.

We need to find

. This is the amount of water hiting the wall per second.

Our final formula would be:

And now we can calculate the answer:
Answer:
1.30
Explanation:
To calculate the critical angle we have ti use the formula:

where theta_c is the critical angle, n1 is the index of refraction of the material where the light is totally reflected, and n2 is the refractive index of the other material.
By taking n_2 and replacing we obtain:

hope this helps!!