The first model of the atom was developed by JJ Thomson in 1904, who thought that atoms were composed purely of negatively charged electrons. This model was known as the 'plum pudding' model.
This theory was then disproved by Ernest Rutherford and the gold foil experiment in 1911, where Rutherford shot alpha particles at gold foil, and noticed that some went through and some bounced back, implying the existence of a positive nucleus.
In 1913, Niels Bohr proposed a model of the atom where the electrons were contained within quantized shells that orbited the nucleus. This was because it was impossible for the cloud of negative electrons proposed by Rutherford to exist, as the negative electrons would be drawn to the positive nucleus, and the atom would collapse in on itself.
In 1926, the Austrian physicist Erwin Schrödinger created a quantum mechanical model of the atom by combining the equations for the behavior of waves with the de Broglie equation to generate a mathematical model for the distribution of electrons in an atom.
However the model used today is closest to the Bohr model of the atom, using the quantized shells to contain the electrons.
For more info:
http://chemistry.about.com/od/chemistryglossary/a/debroglieeqdef.htm
Answer:
Explanation:
Angular momentum ( L ) = moment of inertia x angular velocity ( I X ω )
Moment of inertia of two 480 g masses about axle = 2 x mr² = 2 x 480 x10⁻³ x( 24 x 10 ⁻ 2 )² = 0. 552960 kg m².
Angular velocity = 5 rad / s.
Angular momentum = 0.552960 x 5 = 2.765 kg m2.
The direction of angular momentum will be along axle.So vector angular
momentum makes zero degree with axle.
Answer:
1.) A simple harmonic oscillator has an amplitude of 3.50 cm and a maximum speed of 26.0 cm/s. What is its speed when the displacement is 1.75 cm? 2.) Both pendulum A and B are 3.0 m long. The period of A is T. Pendulum A is twice as heavy as pendulum B. What is the period of B? 3.) The time for one cycle of a periodic process is called the _ ? 4.) In simple harmonic motion, the acceleration is proportional to? 5.) The position of a mass that is oscillating on a spring is given by x= (18.3 cm) cos [(2.35 s-1)t]. What is the frequency of this motion?
Explanation: