<em>The question doesn't ask anything in particular, I will show the set of inequalities defined in the problem.</em>
Answer:
<em>System of inequalities:</em>


Step-by-step explanation:
<u>Inequalities
</u>
The express relations between expressions with a sign other than the equal sign. Common relationals are 'less than', 'greater than', 'not equal to', and many others.
The gardening club at school has 300 square feet of planting beds to plant cucumber and tomato. Each cucumber plant requires 6 square feet of growing space and each tomato plant requires 4 square feet of growing space. We know the total area cannot exceed 300 square feet, so

Being c and t the number of cucumber and tomato plants respectively.
We also know the students want to plant some of each type of plant and have at least 60 plants. This lead us to more conditions

<em>Note: The set of inequalities shown is not enough to uniquely solve the problem. We need something to maximize or minimize to optimize c and t</em>
1. The withdrawals adds up to 291+99+150+12= 552
500-552= -52
2. The bus pass which cost $150.
3.1000-552= $448 left
4.1000-552-300-150=$-2 left. Withdrawal had happened.
Answer = (7p) + (7q) + 63
Answer:
58
Step-by-step explanation:
It is going to be 58 because that is the more "random" number. It is does not fit with the rest of your numbers.
Write the decimal number as a fraction
(over 1)
0.87 = 0.87 / 1
Multiplying by 1 to eliminate 2 decimal places
we multiply top and bottom by 2 10's
Numerator (N)
N = 0.87 × 10 × 10 = 87
Denominator (D)
D = 1 × 10 × 10 = 100
N / D = 87 / 100
Simplifying our fraction
= 87/100
<span>= 87/100</span>