Answer:
A) 100°C
B) 211 g
Explanation:
Heat released by red hot iron to cool to 100°C = 130 x .45 x 645 [ specific heat of iron is .45 J /g/K]
= 37732.5 J
heat required by water to heat up to 100 °C = 85 x 4.2 x 80 = 28560 J
As this heat is less than the heat supplied by iron so equilibrium temperature will be 100 ° C. Let m g of water is vaporized in the process . Heat required for vaporization = m x 540x4.2 = 2268m J
Heat required to warm the water of 85 g to 100 °C = 85X4.2 X 80 = 28560 J
heat lost = heat gained
37732.5 = 28560 + 2268m
m = 4 g.
So 4 g of water will be vaporized and remaining 81 g of water and 130 g of iron that is total of 211 g will be in the cup . final temp of water will be 100 °C.
Answer:
potential energy which later on gets converted to kinetic energy of an object
<h2>
Answer: B. False</h2>
Explanation:
According to Bernoulli's principle:
<em>"In an ideal fluid (not viscous and without friction) that circulates through a closed conduit, the energy the fluid possesses remains constant along its path."
</em>
From there, Bernoulli deduced that the fluid pressure decreases when the flow rate increases. <u>And this has nothing to do with depth.
</u>
<u>
</u>
To understand it better:
In a fluid that circulates through a closed conduit (a pipe for example), it contains energy in two ways:
-Kinetic energy due to its <u>weigh</u>t and <u>speed.
</u>
-Potential energy in the form of <u>pressure.
</u>
Now, if the system has constant flow and the total energy (kinetic + potential) is also constant, <u>the energy is transformed every time the transverse area of the tube is modified.
</u>
It should be noted that by modifying this transverse area, the flow rate is also modified.
Therefore, <u>as the kinetic energy increases or decreases, this change is compensated by the decrease or increase in pressure</u> (potential energy), since the total energy of the system cannot be created or destroyed.
Mars Global Surveyors (MGS) and later orbiters found the following minerals on the Martian surface;
- Carbonate
- Sulfates
- Iron oxide
The Mars Global Surveyors (MGS) and later orbiters suggest that the Martian crust contains a higher percentage of volatile elements such as Sulphur and chlorine than the Earth's crust does.
These scientists also conclude that the most abundant chemical elements in the Martian crust are those found in Igneous rock.
These elements include the following;
- Silicon,
- Oxygen,
- Iron,
- Magnesium,
- Aluminum,
- Calcium, and
- Potassium.
They also, suggest that hydrogen is found in ice (water) while carbon is found in carbon dioxide and carbonates.
From the given options the minerals found in Martian surface include;
- Phyllosilicates ------ these are sheet of silicate minerals
- Carbonate
- Sulfates
- iron oxide
Learn more here: brainly.com/question/20470323