Answer:
10N
Explanation:
Equation: ΣF = ma
Fapp = ma
Fapp = (2kg)(5m/s^2) (im guessing you mean 5.00 m/s^2 not m/s)
Fapp = 10*kg*m/s^2
Fapp = 10N
Answer:

ΔK = 2.45 J
Explanation:
a) Using the law of the conservation of the linear momentum:

Where:


Now:

Where
is the mass of the car,
is the initial velocity of the car,
is the mass of train,
is the final velocity of the car and
is the final velocity of the train.
Replacing data:

Solving for
:

Changed to cm/s, we get:

b) The kinetic energy K is calculated as:
K = 
where M is the mass and V is the velocity.
So, the initial K is:



And the final K is:




Finally, the change in the total kinetic energy is:
ΔK = Kf - Ki = 22.06 - 19.61 = 2.45 J
Answer:
Speed changes at the rate of 24 m/s for each second over time.
Explanation:
We are told the object's acceleration is equal to 24 m/s²
Now we know that acceleration can also be defined as the rate of change of speed with time. Also speed has a unit known as m/s.
Thus, we can rephrase the acceleration in this question to mean;
Speed changes at the rate of 24 m/s for every second with time.
The force on the ship is more than a car
If Earth was twice as far from the sun, the force of gravity attracting the Earth to the sun would be only one-quarter as strong. The correct answer will be C.