Units of impulse: N • s, kg • meters per second
Explanation:
Impulse is defined in two ways:
1)
Impulse is defined as the product between the force exerted in a collision and the duration of the collision:

where
F is the force
is the time interval
Since the force is measured in Newtons (N) and the time is measured in seconds (s), the units for the impulse are
![[I] = [N][s]](https://tex.z-dn.net/?f=%5BI%5D%20%3D%20%5BN%5D%5Bs%5D)
So,
N • s
2)
Impulse is also defined as the change in momentum experienced by an object:

where the change in momentum is given by

where m is the mass and
is the change in velocity.
The mass is measured in kilograms (kg) while the change in velocity is measured in metres per second (m/s), therefore the units for impulse are
![[I]=[kg][m/s]](https://tex.z-dn.net/?f=%5BI%5D%3D%5Bkg%5D%5Bm%2Fs%5D)
so,
kg • meters per second
Learn more about impulse:
brainly.com/question/9484203
#LearnwithBrainly
Answer:
A.) 42.7 m/s
B.) 0.33 m/s^2
C.) 90 kg
Explanation:
A.) If Justin races his Chevy S-10 down highway 37 north for 2,560 meters in 60 seconds, what is his velocity?
Velocity = displacement/time
Velocity = 2560/60
Velocity = 42.67 m/s
B.) The Chevy S-10 started rounding at 10 meters per hour. What is the acceleration at 30 seconds on the highway?
Acceleration = velocity/time
Acceleration = 10/30
Acceleration = 0.33 m/s^2
C.) The S-10 has a force of 30 N. What is the mass of the car?
Force = mass × acceleration
30 = mass × 0.33
Mass = 30/ 0.33
Mass = 90 kg
Answer:
C1/C2 = 0.213 or C2/C1 = 4.68
Explanation:
Please refer to the attached image for step by step explanation.
Answer:
When an electric field exists in a conductor a current will flow.
This implies a voltage difference between two points on the conductor.
Electrostatics pertains to static charge distributions.
That means that an object such as a charged spherical conductor will be at the same potential (voltage) on both its outer and inner surfaces.
<h3><u>Answer</u>;</h3>
-The total momentum of an isolated system is constant.
-The total momentum of any number of particles is equal to the vector sum of the momenta of the individual particles.
-The vector sum of forces acting on a particle equals the rate of change of momentum of the particle with respect to time.
<h3><u>Explanation</u>;</h3>
- Momentum is a vector quantity, and therefore we need to use vector addition when summing together the momenta of the multiple bodies which make up a system.
- The vector sum of forces acting on a particle is equivalent to the rate of change of momentum of the particle with respect to time. This is according to the Newton's second Law of motion. In mathematical terms, ֿF = d ֿp/dt, that is F= ma.
- According to the Law of conservation of Momentum, or a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.