The correct reaction equation is:
Answer:
b) 1 mole of water is produced for every mole of carbon dioxide produced.
Explanation: <u>CONVERT EVERYTHING TO MOLES OR VOLUME, THEN COMPARE IT WITH THE COMPOUND'S STOICHIOMETRY IN CHEMICAL EQUATION.</u>
a) <u>22.4 L of gas</u> is produced only when <u> L of </u> is reacted with 22.4 L of . So it is wrong.
b) Since in the chemical equation the stoichiometric coefficient of and are same so the number of moles or volume of each of them will be same whatever the amount of reactants taken. <u>Therefore it is correct option.</u>
c) molecules is equal 1 mole of if produced then 3 moles of is required, which is not given in the option. So it is wrong.
d) 54 g of water or 3 moles of (<em>Molecular Weight of water is 18 g</em>) is produced when 3 moles of is used but in this option only one mole of is given. So it is wrong.
Explanation:
the above process is done in very detail .
hope this is helpful.
Answer:
1.0 *10^(-4) mol
Explanation:
For gases:
n1/n2 = V1/V2
n1/3.8*10^(-4) mol = 230 mL/ 860 mL
n1 = 3.8*10^(-4)*230/860 = 1.0 *10^(-4) mol
Answer:
gold
Explanation:
to work out density you do mass which is 38.6 divided by volume which is 2cm cubed and you get the answer of 19.3 so it is gold.
<span>To find the molar mass, look at a periodic table for each element.
Ibuprofen, C13 H18 and O2. Carbon has a molar mass of 12.01 g, Hydrogen has 1.008 g per mole, and Oxygen is 16.00 g per mole.
C: 13 * 12.01
H: 18 * 1.008
O: 2 * 16.00
Calculate that, add them all together, and that is the molar mass of C13H18O2.
Molar mass: 206.274
Next, you have 200mg in each tablet, with a ratio of C13H18O2 (molar mass) in GRAMS per Mole
So, you need to convert miligrams into grams, which is 200 divided by 1000.
0.2 g / Unknown mole = 206.274 g / 1 Mole
This is a cross multiplying ratio where you're going to solve for the unknown moles of grams per tablet compared to the moles per ibuprofen.
So, it's set up as:
0.2 g * 1 mole = 206.274 * x
0.2 = 206.274x
divide each side by 206.274 to get X alone
X = 0.00097
or 9.7 * 10^-4 moles
The last problem should be easy to figure out now that you have the numbers. 1 dose is 2 tablets, which is the moles we just calculated above, times four for the dosage.
</span>