We are asked to find the value of ΔG°rxn from the equilibrium concentrations of the reactants and products. We can use the following formula:
ΔG°rxn = -RTlnK
The value of R = 8.314 J/Kmol, T = 298.15 K and we are given the equilibrium constant Keq = 2.82.
The question provides equilibrium concentrations and then asks to find ΔG°rxn when more of a product is added to the reaction mixture. However, you are asked to find ΔG after the reaction has settled down and reached equilibrium once more. Therefore, we can simply use Keq = 2.82 still and solve for ΔG.
ΔG°rxn = -(8.314 J/Kmol)(298.15 K)(ln(2.82))
ΔG°rxn = -2570 J/mol
ΔG°rxn = -2.57 kJ/mol
Under equilibrium conditions at standard temperature and pressures, the value of ΔG°rxn = -2.57 kJ/mol.
Answer:
<u>Potential energy is</u> the stored energy in an object or thing, while <u>kinetic energy is</u> the energy which an object contains because of a particular motion.
Explanation:
The equilibrium constant (Kc) is the product of the equilibrium concentrations of the products raised to their corresponding stoichiometric coefficients divided by the reactants as well. In this case the equilibrium concentration of Cl2 which also applies to SO2 is 1.3x10^-2. The final equilibrium concentration of SO2Cl2 is 9x10^-3. Kc is then equal to 0.0188.
Moles of ca3(po4)2 = 23.7 / 310.17 = 0.076
moles of (PO4)3- = 0.076 x 2 = 0.152
now, no. of ions = 0.152 x 6.022 x 10^{23}
= 9.2 x 10^{22}
To answer this question, you need to know <span>Graham's Law of Effusion/Diffusion formula. In this formula, the rate of diffusion/effusion would be influenced by the mass. As the molecule has bigger mass, the rate should be slower because it will be harder to pass the membrane. The calculation should be:</span>
<span>Rate 1 / Rate 2 = √[M2/M1]
</span>4.11/1= √[M2/2]
M2=33.78 g/mol