It is real, however it gets inverted in the retina and flips back in the cornea
Answer:
6.8 m/s2
Explanation:
Let g = 9.8 m/s2. The total weight of both the rope and the mouse-robot is
W = Mg + mg = 1*9.8 + 2*9.8 = 29.4 N
For the rope to fails, the robot must act a force on the rope with an additional magnitude of 43 - 29.4 = 13.6 N. This force is generated by the robot itself when it's pulling itself up at an acceleration of
a = F/m = 13.6 / 2 = 6.8 m/s2
So the minimum magnitude of the acceleration would be 6.8 m/s2 for the rope to fail
Answer:
The value of heat transfer during the process Q = - 29.49 KJ
Explanation:
Given data
= 50
= 344.7 k pa
= 0.113 
F = 366.4 K
= 477.6 K
Poly tropic index n = 1.2
gas constant for oxygen = 0.26 
From ideal gas equation
= m R 
Put all the values in above equation we get
⇒ 344.7 × 0.113 = m × 0.26 × 366.4
⇒ m = 0.408 kg
Heat transfer in poly tropic process is given by
Q = ![\frac{\gamma - n}{( \gamma - 1)( n - 1)} [ {m R (T_{1} - T_{2} ) ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cgamma%20-%20n%7D%7B%28%20%5Cgamma%20-%201%29%28%20n%20-%201%29%7D%20%5B%20%7Bm%20R%20%28T_%7B1%7D%20-%20T_%7B2%7D%20%20%29%20%5D)
Put all the values in above formula we get
⇒ Q = ![\frac{1.4 - 1.2}{( 1.4 - 1)( 1.2 - 1)} [ {m R (T_{1} - T_{2} ) ]](https://tex.z-dn.net/?f=%5Cfrac%7B1.4%20-%201.2%7D%7B%28%201.4%20-%201%29%28%201.2%20-%201%29%7D%20%5B%20%7Bm%20R%20%28T_%7B1%7D%20-%20T_%7B2%7D%20%20%29%20%5D)
⇒ Q = 2.5 × 0.408 × 0.26 × ( 366.4 - 477.6 )
⇒ Q = - 29.49 KJ
This is the value of heat transfer during the process & negative sign shows that heat is lost during the process.
Momentum = mass x velocity
Before collision
Momentum 1 = 2 kg x 20 m /s = 40 kg x m/s
Momentum 2 = 3 kg x -10m/s = -30 kg x m/s
After collision
Momentum 1 = 2 kg x -5 m/s = -10 m/s
Momentum 2 = 3 kg x V2 = 3V2
Total momentum before = total momentum after
40 + -30 = -10 + 3V2
V2 = <span>6.67 m/s
Total kinetic energy before
</span><span>= (1/2) [ 2 kg * 20 m/s * 2 + 3 kg * ( -10 m/s) *2 ]
= 550 J
</span>
<span>Total kinetic energy after
</span>= (1/2) [ 2 kg * ( - 5 m/s) * 2 + 3 kg * 6.67 m/s *2 ]
= 91.73 J
Total kinetic energy lost during collision
=<span>550 J - 91.73 J
= 458.27 J</span>
One watt is defined as the energy consumption rate of one joule per second. 1W = 1J / 1s. One watt is also defined as the current flow of one ampere with voltage of one volt.