A projectile motion is characterized by motion moving in a direction of an arc. It is acted upon by two component vectors: the horizontal and vertical. These two vectors are independent of each other when it comes to time of flight. The horizontal direction travels at constant speed, while the vertical direction travels at constant acceleration due to gravity, The time for an object to reach the ground would be equal, whether dropped from the sampe point or thrown in a projectile motion. Of course, this is assuming ideality wherein there is no air resistance.
So, the hang up time, or the time the object stayed on air is calculated using this equation:
a = Δv/t
Δv is the change in velocity which is the initial velocity when it was dropped to when it reaches zero velocity when it hits the ground.
9.81 m/s² = |(0 - 7.3)|/t
t = 0.744 seconds
Answer:
568.18 N
Explanation:
From the question,
The formula for gravitational potential is given as
Ep = mgh........................ Equation 1
Where Ep = Gravitational potential, m = mass of the diver,h = Height.
But,
W = mg.................... Equation 2
Where W = weight of the diver.
Substitute equation 2 into equation 1
Ep = Wh
Make W the subject of the equation
W = Ep/h................... Equation 3
Given: Ep = 25000 J, h = 44 m
Substitute into equation 3
W = 25000/44
W = 568.18 N.
Hence the weight of the diver = 568.18 N
Answer:
The correct solution is "14.6875 kg".
Explanation:
Given values:
Force,
F = 47.0 N
Acceleration,
a = 3.20 m/s²
Now,
⇒ 
or,
⇒ 
⇒ 
⇒ 
⇒ 
Answer: mass and distance
Explanation: