Answer:
-6s-c+1
Step-by-step explanation:
(-3s-4c+1)+(-3s+3c)
We have been given the above expression. To find the sum, we simply collect the like terms and combine them;
(-3s-4c+1)+(-3s+3c) = -3s + -3s -4c + 3c + 1
-3s + -3s -4c + 3c + 1 = -3s - 3s + 3c - 4c + 1
-3s - 3s + 3c - 4c + 1 = -6s - c + 1
Therefore;
(-3s-4c+1)+(-3s+3c) = -6s-c+1
Answer:
sin(x) = 5/13
cos(y) = 5/12
Therefore, sin(x) = cos(y)
Step-by-step explanation:
Trig ratios:

where
is the angle, O is the measure of the side opposite the angle, A is the measure of the side adjacent to the angle and H is the hypotenuse, of a right triangle
We have been given the measures of the two legs, so we can find the measure of the hypotenuse by using Pythagoras' Theorem 
(where a and b are the legs and c is the hypotenuse of a right triangle)

Now we can use the trig ratios:


Therefore, sin(x) = cos(y)
D , because they are both completely unrelated which means one does not depend on the other. bringing an umbrella is independent from going to school knowing u have a test.
Part a)
Answer: 5*sqrt(2pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(50/pi)
r = sqrt(50)/sqrt(pi)
r = (sqrt(50)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(50pi)/pi
r = sqrt(25*2pi)/pi
r = sqrt(25)*sqrt(2pi)/pi
r = 5*sqrt(2pi)/pi
Note: the denominator is technically not able to be rationalized because of the pi there. There is no value we can multiply pi by so that we end up with a rational value. We could try 1/pi, but that will eventually lead back to having pi in the denominator. I think your teacher may have made a typo when s/he wrote "rationalize all denominators"
============================================================
Part b)
Answer: 3*sqrt(3pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(27/pi)
r = sqrt(27)/sqrt(pi)
r = (sqrt(27)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(27pi)/pi
r = sqrt(9*3pi)/pi
r = sqrt(9)*sqrt(3pi)/pi
r = 3*sqrt(3pi)/pi
Note: the same issue comes up as before in part a)
============================================================
Part c)
Answer: sqrt(19pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(19/pi)
r = sqrt(19)/sqrt(pi)
r = (sqrt(19)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(19pi)/pi