Answer:
One way creativity is helpful to scientists is when they need to come up with a experiment or cure for something their imaginastion is very helpful. The reason for that is with creativity they could get answers much quicker!
Explanation:
Hello!
To find the mass of helium, we need to multiply the total moles by the mass of helium. We are given 2.714 moles of helium, and the mass of helium is about 4.00 grams. Now, we multiply the two values together to get the grams.
2.714 moles x 4.00 grams = 10.856 grams
According to the number of significant figures, 2.714 moles of helium has a mass of 10.9 grams (exact value: 10.856 grams).
Option C: Sulfur Dioxide is the answer
Hope this helps
Answer:
a
Explanation:
ADAPTATIOnn but if thhere would be an option o all the above it would be that
i. The dissolution of PbSO₄ in water entails its ionizing into its constituent ions:

---
ii. Given the dissolution of some substance
,
the Ksp, or the solubility product constant, of the preceding equation takes the general form
.
The concentrations of pure solids (like substance A) and liquids are excluded from the equilibrium expression.
So, given our dissociation equation in question i., our Ksp expression would be written as:
.
---
iii. Presumably, what we're being asked for here is the <em>molar </em>solubility of PbSO4 (at the standard 25 °C, as Ksp is temperature dependent). We have all the information needed to calculate the molar solubility. Since the Ksp tells us the ratio of equilibrium concentrations of PbSO4 in solution, we can consider either [Pb2+] or [SO4^2-] as equivalent to our molar solubility (since the concentration of either ion is the extent to which solid PbSO4 will dissociate or dissolve in water).
We know that Ksp = [Pb2+][SO4^2-], and we are given the value of the Ksp of for PbSO4 as 1.3 × 10⁻⁸. Since the molar ratio between the two ions are the same, we can use an equivalent variable to represent both:

So, the molar solubility of PbSO4 is 1.1 × 10⁻⁴ mol/L. The answer is given to two significant figures since the Ksp is given to two significant figures.