Carbon Dioxide has two polar C=O. bonds, but the geometry of Carbon dioxide is linear so that the two bond dipole moments cancel and there is no net molecular dipole moment; the molecule is nonpolar.
I hope this helps :)
Hey there!:
Given % of Mn=59.1% means 59.1 g of Mn present in 100 g of manganese fluoride.
Molar mass of Mn= 54.938 g/mol
Moles of Mn = mass / molar mass
59.1 /54.938 => 1.07 ≈ 1 mol.
and % of F=40.9% means 40.9 g of of F present in 100 g of manganese fluoride.
Molar mass of F=18.998 g/mol
Moles of F :
40.9 / 18.999 => 2.15 mol ≈ 2 mol.
The mole ratio between Mn:F= 1 : 2
Therefore the empirical formula of manganese fluoride:
=> MnF2=Mn1F2
Hope that helps!
Answer:
The equilibrium constant Kc = [Fe]²*[H2O]³ / [Fe2O3][H2]³
Explanation:
Step 1: Data given
For the reaction aA + bB ⇆ cC + dD
the equilibrium constant Kc = [C]^c * [D]^d/[B]^b*[A]^a
Step 2: The balanced equation
Fe2O3(s) + 3H2(g) --> 2Fe(s) + 3H2O(g)
Step 3: Calculate the equilibrium constant Kc
Kc = [C]^c * [D]^d/[B]^b*[A]^a
⇒with [C] = [Fe]
⇒ with c = 2
⇒with [D] = [H2O]
⇒with d = 3
⇒with [A] = [Fe2O3]
⇒with a = 1
⇒with [B] = [H2]
⇒with b = 3
Kc = [C]^c * [D]^d/[B]^b*[A]^a
Kc = [Fe]²*[H2O]³ / [Fe2O3][H2]³
The equilibrium constant Kc = [Fe]²*[H2O]³ / [Fe2O3][H2]³
No idea , sorry. maybe it is.....actually i dont know, sooo sorry
Reaction of
Acyl Halides with
Grignard reagent results in the formation of
Ketones in first step. While in second step reaction of Grignard reagent with Ketones results in the formation of
Tertiary Alcohols.
If you want to
stop the reaction at
Ketone stage then you are required to use another
mild reactive organometallic compound. In our case we will use Organocuprates.
Organocuprates are also known as Gilman Reagents. These reagents does not add to ketones, aldehydes and esters but they can add to acid halides to produce Ketones.