1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Taya2010 [7]
3 years ago
15

Please help solve :D

Mathematics
2 answers:
Mkey [24]3 years ago
5 0

Answer:

101

Step-by-step explanation:

4x+11 + 6x -1 = 180 (because they are supplementary)

10x =170

x = 17

angle L = 6(17) - 1 = 101

Angle L and Angle N are congruent. so N = 101

lana66690 [7]3 years ago
4 0
The answer to this is101
You might be interested in
The cost of 3 ibs of turkey is $9.81. What is the cost per pound for the turkey?
butalik [34]
3 = $9.81

1 = $?

To find this you have to do 9.81/3.

Hope this helps and have a nice day!!
3 0
3 years ago
247÷10^2 and 247 ×10^2
Shalnov [3]
PEMDAS:
247/100 = 2.47
247* 100 = 24700
*You must ALWAYS apply the exponents first, THEN divide the equation.
7 0
4 years ago
The two triangles shown are congruent: ΔFHG ≅ ΔJKL. Based on this information, which of the following is a true statement?
julia-pushkina [17]

Answer:

Answer is C) Angle G is congruent to Angle L

5 0
3 years ago
Read 2 more answers
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
A teacher buys packs of notebooks to give to his students. The ratio of gold notebooks to red notebooks is represented in the ta
Naddika [18.5K]

Answer:

there would be 40 gold notebooks

Step-by-step explanation:

if the ratio is 5g to 3r i took the 24 red and divided it by 3 which gave me 8. I then multiplied 8 by 5 and got 40. so 40:24 is equal to 5:3

4 0
3 years ago
Other questions:
  • Which is the correct formula to calculate the volume of a sphere?
    9·1 answer
  • The lines shown below are parallel. If the green line has a slope of 5, what is the slope of the red line?
    12·2 answers
  • Kamil make $70 per week mowing lawns. How much will kamil make in 6 weeks? Will he make more then $600 in 8 weeks? Explain.
    14·1 answer
  • What is the largest perfect square that would be a factor when simplifying √48?
    12·1 answer
  • 4 times as much money as $5
    14·2 answers
  • -((-7) +(4)(-12)+(-3)(11)+(-2))
    8·2 answers
  • Find the GCF of 52 and 84.​
    11·1 answer
  • You are designing the garden of your dream and you are going to start with a blank canvas. That means killing everything before
    15·1 answer
  • What is the slope of the line that passes through the points
    6·1 answer
  • The administrator of a county's museum is considering increasing the price of an annual pass by 1% from $55 to $55.55. At the cu
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!