Answer:
1.169s
Explanation:
k = 0.851 M-1s-1
The unit of the rate constant, k tells us this is a second order reaction.
From the question;
Initial Concentration [A]o = 2.01M
Final Concentration [A] = One third of 2.10 = (1/3) * 2.10 = 0.67M
Time = ?
The integrated rate law for second order reactions is given as;
1 / [A] = (1 / [A]o) + kt
Making t subject of interest, we have;
kt = (1 / [A] ) - (1 / [A]o )
t = (1 / [A] ) - (1 / [A]o ) / k
Inserting the values;
t = [ (1 / 0.67 ) - (1 / 2.10) ] / 0.851
t = ( 1.4925 - 0.4975 ) / 0.851
t = 0.995 / 0.851
t = 1.169s
[A] = 0.13073 M ≈ 0.13 M ( 2 s.f)
It introduces a diverse array of bacteria, algae, and invertebrates to the closed marine environment and functions as a superior biological filter
Answer:
the conservation of mass means matter can be created or destroyed, it only changes forms
Explanation:
plz mark me as brainliest
From the Rutherford's gold foil experiment one can conclude that nucleus was very small in size, as compared to the atoms. In the experiment Rutherford discovered that, the atom contains a very small nucleus where all of its positive charge of the atom is present.
Answer:
Hi, the question is incomplete. However, the question is about the calculation of volume of a product when the volume of one of the reactants is provided.
9.587 cm^3
Explanation:
The balanced equation for the chemical reaction is shown below:
⇒
In the chemical reaction above, 2 moles of water produced 4 moles of hydrogen fluoride. If 4.8 cm^3 of water were consumed, we can calculated the volume of hydrogen fluoride that would be produced as follow:
Using STP, 1 mole of gas has a volume of 22.4 L
Thus, 4.8 cm^3 = 0.0048 L is equivalent to 2.14*10^-4
since 2 moles of water produced 4 moles of hydrogen fluoride, therefore, 2.14*10^-4 would produced 2*2.14*10^-4 = 4.28*10^-4 moles
we can convert the moles to L by multiplying with 22.4
volume of hydrogen fluoride = 4.28*10^-4 * 22.4 = 0.009587 L = 9.587 cm^3