The product in simplest form is (x - 4)
<em><u>Solution:</u></em>
<em><u>Given expression is:</u></em>

We have to find the product in simplest form
In the given expression,
2x + 8 = 2(x+ 4)
We know that,

Therefore,

Substitute these in given expression

Cancel the common factors,

Thus the product in simplest form is (x - 4)
Answer:
what the expression, lmk in comments and then i will help you :)
Step-by-step explanation:
I am assuming that we have to round the numbers to the nearest tens.
When rounding off numbers, if the number is more than half, then you round it up for example, if the number is 15 and you want to round it off, you round it up to 20. But if the number is 14 you round is down to 10
Therefore, 33 would be rounded off to 30 as 3 is less than 5 in the ones place if you get what I mean.
As for 89, you would round it up to 90 as the 9 in the ones place is more than 5.
Therefore the sum of 90 and 10 is 100.
Hope this helps!
Answer: 8/35 is the exact answer as a fraction; approximately that is equal to 0.22857 (rounded to 5 decimal places)
Work Shown:
The volume of this prism is equal to the length times width times height. We multiply the three fractions out. To do this, multiply straight across. The numerators group up and multiply. The denominators form a separate group to multiply.
Multiply the numbers up top (numerators): 2*3*4 = 6*4 = 24
Multiply the numbers in the bottom (denominators): 3*5*7 = 15*7 = 105
We end up with 24/105. We can divide both numbers by 3 to reduce the fraction (note how 3 is a factor of each multiplication above)
24/3 = 8
105/3 = 35
So that's how I got 8/35
If you want to convert to decimal form, then 8/35 = 0.22857 approximately.
Answer:
Hay 200 botellas de 5 litros y 1000 botellas de 2 litros.
Step-by-step explanation:
Un sistema de ecuaciones lineales es un conjunto de dos o más ecuaciones de primer grado, en el cual se relacionan dos o más incógnitas.
Resolver un sistema de ecuaciones consiste en encontrar el valor de cada incógnita para que se cumplan todas las ecuaciones del sistema.
En este caso, las variables a calcular son:
- x= cantidad de botellas de 2 litros.
- y= cantidad de botellas de 5 litros.
Una empresa aceitera ha envasado 3000 litros de aceite en 1200 botellas de dos y de cinco litros. Entonces es posible plantear el siguiente sistema de ecuaciones:

Existen varios métodos para resolver un sistema de ecuaciones. Resolviendo por el método de sustitución, que consiste en despejar o aislar una de las incógnitas y sustituir su expresión en la otra ecuación, despejas x de la segunda ecuación:
x= 1200 - y
Sustituyendo la expresión en la primer ecuación:
2*(1200 - y) + 5*y=3000
Resolviendo se obtiene:
2*1200 - 2*y + 5*y= 3000
2400 +3*y= 3000
3*y= 3000 - 2400
3*y= 600
y= 600÷3
y= 200
Reemplazando en la expresión x= 1200 - y:
x= 1200 - y
x=1200 -200
x= 1000
<u><em>Hay 200 botellas de 5 litros y 1000 botellas de 2 litros.</em></u>