Electrons: negative
Protons: positive
Neutrons: nuetral
Answer : The correct expression for equilibrium constant will be:
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Therefore, the correct expression for equilibrium constant will be, ![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
First, you need to convert kg to g.
So, 1 kg =1000g.
3.5 x 1000 = 3500g Ca(OH)2
We need to know the molar mass of Ca(OH)2.
Ca= 40.08 g
O=2(15.999)
H=2(1.0079)
Add them all together and you get 74.0938 g.
Put it in the formula from mass to moles.
# of moles = grams Ca(OH)2 x 1 mol Ca(OH)2
--------------------
molar mass Ca(OH)2
3500 g Ca(OH)2 x 1 mol Ca(OH)2
---------------------
74.0938 g Ca(OH)2
So divide 1/74.0938 and multiply by 3500.
You will get about 47.24 moles Ca(OH)2.
Hope this helps! :)