Put the <em>wood and excess oxygen in a closed contai</em>ner that contains some device that can create a spark (to start the reaction).
Determine the <em>mass of container + contents</em>.
<em>Start the reaction</em> and, after everything has cooled down, again determine the <em>mass of container + contents</em>.
If the two masses are the same, you have demonstrated that the reaction obeys the Law of Conservation of Mass.
<span>Answer: 100 ml
</span>
<span>Explanation:
1) Convert 1.38 g of Fe₂S₃ into number of moles, n
</span>i) Formula: n = mass in grass / molar mass
<span>
ii) molar mass of </span><span>Fe₂S₃ =2 x 55.8 g/mol + 3 x 32.1 g/mol = 207.9 g/mol
</span>
iii) n = 1.38 g / 207.9 g/mol = 0.00664 moles of <span>Fe₂S₃
</span>
<span>2) Use the percent yield to calculate the theoretical amount:
</span>
<span>65% = 0.65 = actual yield/ theoretical yield =>
</span>theoretical yield = actual yield / 0.65 = 0.00664 moles / 0.65 = 0.010 mol <span>Fe₂S₃</span><span>
3) Chemical equation:
</span>
<span> 3 Na₂S(aq) + 2 FeCl₃(aq) → Fe₂S₃(s) + 6 NaCl(aq)
4) Stoichiometrical mole ratios:
</span>
<span>3 mol Na₂S : 2 mol FeCl₃ : 1 mol Fe₂S₃ : 6 mol NaCl
5) Proportionality:
</span>2moles FeCl₃ / 1 mol Fe₂S₃ = x / 0.010 mol Fe₂S₃
<span>
=> x = 0.020 mol FeCl₃
6) convert 0.020 mol to volume
</span>
<span>i) Molarity formula: M = n / V
</span>
<span>ii) V = n / M = 0.020 mol / 0.2 M = 0.1 liter = 100 ml
</span>
The correct answer is D. Using the law of conservation of mass the number of atoms on each side of the equation should be equal. Through introspection, we find that there are 2
atoms on reactant side as opposed 3Cl atoms on product side. If we add a coefficient of 3 on
we get
.
Now there are 6Cl atoms on reactant side and 2 on product side, hence we add a coefficient of 2 on both
and
. The balanced chemical equation is,

I think B is write but even I’m not sure