Answer:
There are 0.09996826 moles per liter of the solution.
Explanation:
Molar mass of HNO3: 63.02
Convert grams to moles
0.63 grams/ 63.02= 0.009996826
Convert mL to L and place under moles (mol/L)
100mL=0.1 L
0.009996826/0.1= 0.09996826 mol/L
Your answer to 2.5*22.56 is 56.25
Places with high altitudes will have cold climates.
Those substances which has pH less than 5 are more acidic than Honeybee Venom. Some of them are listed below along with their pH scale,
1) <span>Acid rain and Tomato Juice has a pH of 4.
2) Soda and Orange Juice has a pH of 3.
3) Vinegar and Lemon Juice has pH of 2.
4) Gastric acid has a pH of 1.
5) Battery Acids have pH of zero.</span>
24.6 ℃
<h3>Explanation</h3>
Hydrochloric acid and sodium hydroxide reacts by the following equation:

which is equivalent to

The question states that the second equation has an enthalpy, or "heat", of neutralization of
. Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce
or
of energy.
500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release
of energy.
Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.
The question has given the heat capacity of the calorimeter directly.
The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.
The calorimeter contains 1.00 liters or
of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of
.
The solution has a specific heat of
. The solution thus have a heat capacity of
. Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.
The calorimeter-solution system thus has a heat capacity of
, meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy.
are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.