The answer I got was : 52.2
Answer:
3.4 M
Explanation:
M = grams/molar mass = ans./volume(L)
M = 919/180 = ans./1.5
The balanced chemical equation is:
2H2 + O2 ---> 2H2O
We are given the amount of the product produced from the reaction. This will be the starting point for the calculations.
355 g H2O ( 1 mol H2O/ 18.02 g H2O) ( 1 mol O2 / 2 mol H2O ) ( 32 g O2 / 1 mol O2 ) = 315.205 g O2
Answer:
100 mL
Explanation:
The reaction that takes place is:
- CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
First we <u>convert 500 mg of CaCO₃ into mmoles</u>, using its <em>molar mass</em>:
- 500 mg ÷ 100 mg/mmol = 5 mmol CaCO₃
Then we <u>convert 5 mmoles of CaCO₃ into HCl mmoles</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 5 mmol CaCO₃ *
= 10 mmol HCl
Finally we <u>calculate the volume of a 0.10 M HCl solution (such as stomach acid) that would contain 10 mmoles</u>:
- 10 mmol / 0.10 M = 100 mL
Answer:
From the periodic table, Atomic number of fluorine is 7 and atomic mass is 19