Answer:
KE =
m
Explanation:
In the generation of energy from hydroelectric power station, the motion of water, and the turbines are paramount. The falling flowing water turns the blades of the turbine, which in-turn causes the movement of a coil within a strong magnetic field.
The motion of the coil which cuts the strong magnetic field induces current. Thus, the system generates electrical energy.
The equation that links kinetic energy (KE), mass (m) and speed (v) can be expressed as:
KE =
m
Use the definition of acceleration:
Acceleration = (change of velocity) divided by (time for the change)
The graph says:
Change of velocity = -6 m/s
Time for the change = 3 sec
So Acceleration = (-6m/s) / (3 s)
That's -6/3 m/s•s
or
-2 m/s^2
Explanation:
Before mitosis, the chromosomes are copied. They then coil up, and each chromosome looks like a letter X in the nucleus of the cell. The chromosomes now consist of two sister chromatids. Mitosis separates these chromatids, so that each new cell has a copy of every chromosome
When a force applied to a breaker bar the torque can be calculated by multiplying the<u> length of the lever</u> by the tangential component of force on the lever.
<h3>What is torque?</h3>
Torque is the <u>rotating equivalent</u> of force in physics and mechanics. Depending on the subject of study, it is also known as the moment, moment of force, rotating force, or turning effect. It illustrates how a force can cause a change in the body's rotational motion.
Torque is given by the formula :
α = r x F ( bold letters represent vector quantities)
The S.I. unit for torque is : N - m ( Newton - meter)
<h3>How do we define 1 N-m of torque?</h3>
The newton-metre is a torque unit (also known as a moment) in the SI system. The torque produced by a one newton force applied <u>perpendicularly to the end of a one metre long</u> moment arm is known as a newton-metre.
To learn more about torque:
brainly.com/question/14970645
#SPJ4
Answer:

Explanation:
Given the following data;
Frequency = 4.0 x 10⁹ Hz
Planck's constant, h = 6.626 x 10-34 J·s.
To find the energy of the electromagnetic wave;
Mathematically, the energy of an electromagnetic wave is given by the formula;
E = hf
Where;
E is the energy possessed by a wave.
h represents Planck's constant.
f is the frequency of a wave.
Substituting the values into the formula, we have;

