We could take the easy way out and just say
(110 kW) x (3 hours) = 330 kilowatt hours .
But that's cheap, and hardly worth even 5 points.
If we want to talk energy, let's use the actual scientific unit of energy.
________________________________________________
" 110 kw " means 110,000 watts = 110,000 joules/second .
(3 hours) x (3600 sec/hour) = 10,800 seconds.
(110,000 joules/second) x (10,800 seconds) = 1.188 x 10⁹ Joules
That's
==> 1,188,000,000 joules
==> 1,188,000 kilojoules
==> 1,188 megajoules
==> 1.188 gigajoules
Atsa nawfulotta energy !
It goes back to that "110 kw appliance" that we started with.
That's no common ordinary household appliance. 110 kw is something like
147 horsepower. In order to bring 110 kw into your house, you'd need to
take 458 Amperes through the 240-volt line from the pole. Most houses
are limited to 100 or 200 Amperes, tops. And the TRANSFORMER on
the pole, that supplies the whole neighborhood, is probably a 50 kw unit.
Answer:
Volume increases
Explanation:
The balloon when filled at sea level being comparatively close to the center of the earth will have higher pressure due to the influence of gravity and when this balloon is taken to the top of the mountain being away from the center of earth, it will experience a lesser pressure due to low gravity where the amount of force exerted by the air on the object is lesser as compared to to that at the sea level.
Therefore, there will be an increase in volume of the balloon as there is expansion of air on the inside of the balloon as a result of low pressure.
There is not much effect of temperature at both the sea level and the mountain top as the temperature does not impart any energy to the air molecules so as to decrease the volume.
Therefore,there is an increase in the volume of the balloon at the top of the mountain.
Percentage change in volume is given by:

Answer:
t = 2.2 s
Explanation:
Given that,
Height of the roof, h = 24.15 m
The initial velocity of the pumpkin, u = 0
We need to find the time taken for the pumpkin to hit the ground. Let the time be t. Using second equation of kinematics to find it as follows :

Here, u = 0 and a = g

So, it will take 2.22 s for the pumpkin to hit the ground.
Answer:
hi i only dont understand want ur saying