Answer:
No
Explanation:
In ideal solutions, the interactions between solute - solvent are approximately the same as those of solute - solute and solvent - solvent, that is the interactions are to be practically indistintiguishable after disolution.
The moment we have a release of energy (the solution feels warm) we are to conclude that there are strong interactions between the water and methanol molecules so we would expect the solution to be non ideal.
The reason for the interactions is the presence of hydrogen bonds between methanol and water.
<u>Answer:</u> The hydroxide ion concentration and pOH of the solution is
and 2.88 respectively
<u>Explanation:</u>
We are given:
Concentration of barium hydroxide = 0.00066 M
The chemical equation for the dissociation of barium hydroxide follows:

1 mole of barium hydroxide produces 1 mole of barium ions and 2 moles of hydroxide ions
pOH is defined as the negative logarithm of hydroxide ion concentration present in the solution
To calculate pOH of the solution, we use the equation:
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
We are given:
![[OH^-]=(2\times 0.00066)=1.32\times 10^{-3}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%282%5Ctimes%200.00066%29%3D1.32%5Ctimes%2010%5E%7B-3%7DM)
Putting values in above equation, we get:

Hence, the hydroxide ion concentration and pOH of the solution is
and 2.88 respectively
I'm taking this lesson now, so imma help u ( if u need anything else ask me)
so given Molar mass= 32 g/mol
molar mass= (empirical formula) n
32 = (14x1 + 2x1) n
32 = 16 n , so n= 2
so, molecular formula= N2H4
B. reproduction doesn’t require mate
Answer is: 4.02 grams of water are required.
Chemical reaction: BaH₂ + 2H₂O → Ba(OH)₂ + 2H₂.
Ideal gas law: p·V = n·R·T.
p = 755 mm Hg ÷ 760.0 mmHg / atm = 0.993 atm.
T = 25 + 273.15 = 298.15 K.
V(H₂) = 5.50 L.
R = 0,08206 L·atm/mol·K.
n(H₂) = 0.993 atm · 5.5 L ÷ 0,08206 L·atm/mol·K · 298.15 K.
n(H₂) = 0.223 mol.
From chemical reaction: n(H₂O) : n(H₂) = 1 : 1.
n(H₂O) = 0.223 mol.
m(H₂O) = 0.223 mol · 18 g/mol.
m(H₂O) = 4.02 g.