The cluster that is most likely to be located in the halo of our galaxy is the diagram that shows main-sequence stars of every spectral type except O, along with a few giants and supergiants.
<h3>What are star clusters?</h3>
Star clusters are large collections of stars. Star clusters are classified into two types: Globular clusters are gravitationally bound groups of tens of thousands to millions of old stars.
Because of their location on the dusty spiral arms of spiral galaxies, they are sometimes referred to as galactic clusters. Stars in an open cluster share a common ancestor as they all formed from the same massive molecular cloud.
A typical spiral galaxy has a faint, extended stellar halo. A stellar halo is an essentially spherical population of stars and globular clusters thought to surround most disk galaxies and the cD class of elliptical galaxies. It should be noted that a halo is a spherical cloud of stars surrounding a galaxy. Astronomers have proposed that the Milky Way's halo is composed of two populations of stars.
Learn more about star on:
brainly.com/question/21379923
#SPJ1
Answer:
the field at the center of solenoid 2 is 12 times the field at the center of solenoid 1.
Explanation:
Recall that the field inside a solenoid of length L, N turns, and a circulating current I, is given by the formula:
Then, if we assign the subindex "1" to the quantities that define the magnetic field (
) inside solenoid 1, we have:

notice that there is no dependence on the diameter of the solenoid for this formula.
Now, if we write a similar formula for solenoid 2, given that it has :
1) half the length of solenoid 1 . Then 
2) twice as many turns as solenoid 1. Then 
3) three times the current of solenoid 1. Then 
we obtain:

Answer:
The new speed of the ball is 176.43 m/s
Explanation:
Given;
mass of the ball, m = 7 kg
initial speed of the ball, u = 5 m/s
applied force, F = 300 N
time of force action on the ball, t = 4 s
Apply Newton's second law of motion;

where;
v is new speed of the ball

Therefore, the new speed of the ball is 176.43 m/s
Answer:
Earth is nearest the Sun in July and farthest away in July.
Explanation: