Answer:at 21.6 min they were separated by 12 km
Explanation:
We can consider the next diagram
B2------15km/h------->Dock
|
|
B1 at 20km/h
|
|
V
So by the time B1 leaves, being B2 traveling at constant 15km/h and getting to the dock one hour later means it was at 15km from the dock, the other boat, B1 is at a distance at a given time, considering constant speed of 20km/h*t going south, where t is in hours, meanwhile from the dock the B2 is at a distance of (15km-15km/h*t), t=0, when it is 8pm.
Then we have a right triangle and the distance from boat B1 to boat B2, can be measured as the square root of (15-15*t)^2 +(20*t)^2. We are looking for a minimum, then we have to find the derivative with respect to t. This is 5*(25*t-9)/(sqrt(25*t^2-18*t+9)), this derivative is zero at t=9/25=0,36 h = 21.6 min, now to be sure it is a minimum we apply the second derivative criteria that states that if the second derivative at the given critical point is positive it means here we have a minimum, and by calculating the second derivative we find it is 720/(25 t^2 - 18 t + 9)^(3/2) that is positive at t=9/25, then we have our answer. And besides replacing the value of t we get the distance is 12 km.
Answer:
Approximate escape speed = 45.3 km/s
Explanation:
Escape speed

Here we have
Gravitational constant = G = 6.67 × 10⁻¹¹ m³ kg⁻¹ s⁻²
R = 1 AU = 1.496 × 10¹¹ m
M = 2.3 × 10³⁰ kg
Substituting

Approximate escape speed = 45.3 km/s
Renewable resources are going to be important in our future because if we use up all of our NON-renewable resources now, then we’ll still have the renewable resources to depend on.
I hope this helped! :-)
Answer:
There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.
Answer:
B) 0.3Hz
Explanation:
I just took the test i hope i helped and i hope you pass the test