The answer is n= 6.
What is Balmer series?
The Balmer series is the portion of the emission spectrum of hydrogen that represents electron transitions from energy levels n > 2 to n = 2. These are four lines in the visible spectrum. They are also known as the Balmer lines. The four visible Balmer lines of hydrogen appear at 410 nm, 434 nm, 486 nm and 656 nm.
For the Balmer series, the final energy level is always n=2. So, the wavelengths 653.6, 486.1, 434.0, and 410.2 nm correspond to n=3, n=4, n=5, and n=6 respectively. Since the last wavelength, 410.2 nm, corresponds to n=6, the next wavelength should logically correspond to n=7.
To solve for the wavelength, calculate the individual energies, E2 and E7, using E=-hR/(n^2). Then, calculate the energy difference between E2 (which is the final) and E7 (which is the initial). Finally, use lamba=hc/E to get the wavelength.
To learn more about emission spectrum click on the link below:
brainly.com/question/24213957
#SPJ4
Answer: 
Explanation:
Given
Radius of flywheel is 
Angular acceleration 
For no change in radius, tangential acceleration is given as

Insert the values

Titty milk I think because it taste amazing so you can go 21km/h
Answer:
Coefficient of friction.
Explanation:
The amount of friction divided by the weight of an object is equal to the coefficient of friction. It is a dimensional less number. It can be given by :

N is normal force.
= coefficient of friction

Answer:
B. posititvely charged particles
Explanation:
Opposites attract to each other, and the same charge repels.