<span>Scientists follow a set order of steps when carrying out a scientific investigation to make sure that the method, interpretation and results that they have obtained are repeatable and reliable. This kind of information can be truly said that their data is true and valid. </span>
Answer:
(i) -556 rad/s²
(ii) 17900 revolutions
(iii) 11250 meters
(iv) -55.6 m/s²
(v) 18 seconds
Explanation:
(i) Angular acceleration is change in angular velocity over time.
α = (ω − ω₀) / t
α = (10000 − 15000) / 9
α ≈ -556 rad/s²
(ii) Constant acceleration equation:
θ = θ₀ + ω₀ t + ½ αt²
θ = 0 + (15000) (9) + ½ (-556) (9)²
θ = 112500 radians
θ ≈ 17900 revolutions
(iii) Linear displacement equals radius times angular displacement:
s = rθ
s = (0.100 m) (112500 radians)
s = 11250 meters
(iv) Linear acceleration equals radius times angular acceleration:
a = rα
a = (0.100 m) (-556 rad/s²)
a = -55.6 m/s²
(v) Angular acceleration is change in angular velocity over time.
α = (ω − ω₀) / t
-556 = (0 − 15000) / t
t = 27
t − 9 = 18 seconds
Answer:
1.58 Hz
Explanation:
The frequency of the simple pendulum is given by
f = 1/T
= 1/2π√g/l
In this problem, I = 10.0 cm = 0.1 m
f = 1/2π√9.8/0.1
= 1.58 Hz
object's weight is the independent of mass and gravity .
Weight = mass × gravity