Answer: 1 and 7/15
Step-by-step explanation:
I made the common donominator 15 and then did the problem but the donominator stays the same
Answer:
V = (About) 22.2, Graph = First graph/Graph in the attachment
Step-by-step explanation:
Remember that in all these cases, we have a specified method to use, the washer method, disk method, and the cylindrical shell method. Keep in mind that the washer and disk method are one in the same, but I feel that the disk method is better as it avoids splitting the integral into two, and rewriting the curves. Here we will go with the disk method.
![\mathrm{V\:=\:\pi \int _a^b\left(r\right)^2dy\:},\\\mathrm{V\:=\:\int _1^3\:\pi \left[\left(1+\frac{2}{y}\right)^2-1\right]dy}](https://tex.z-dn.net/?f=%5Cmathrm%7BV%5C%3A%3D%5C%3A%5Cpi%20%5Cint%20_a%5Eb%5Cleft%28r%5Cright%29%5E2dy%5C%3A%7D%2C%5C%5C%5Cmathrm%7BV%5C%3A%3D%5C%3A%5Cint%20_1%5E3%5C%3A%5Cpi%20%5Cleft%5B%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1%5Cright%5Ddy%7D)
The plus 1 in '1 + 2/x' is shifting this graph up from where it is rotating, but the negative 1 is subtracting the area between the y-axis and the shaded region, so that when it's flipped around, it becomes a washer.
![V\:=\:\int _1^3\:\pi \left[\left(1+\frac{2}{y}\right)^2-1\right]dy,\\\\\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx\\=\pi \cdot \int _1^3\left(1+\frac{2}{y}\right)^2-1dy\\\\\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx\\= \pi \left(\int _1^3\left(1+\frac{2}{y}\right)^2dy-\int _1^31dy\right)\\\\](https://tex.z-dn.net/?f=V%5C%3A%3D%5C%3A%5Cint%20_1%5E3%5C%3A%5Cpi%20%5Cleft%5B%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1%5Cright%5Ddy%2C%5C%5C%5C%5C%5Cmathrm%7BTake%5C%3Athe%5C%3Aconstant%5C%3Aout%7D%3A%5Cquad%20%5Cint%20a%5Ccdot%20f%5Cleft%28x%5Cright%29dx%3Da%5Ccdot%20%5Cint%20f%5Cleft%28x%5Cright%29dx%5C%5C%3D%5Cpi%20%5Ccdot%20%5Cint%20_1%5E3%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1dy%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3Athe%5C%3ASum%5C%3ARule%7D%3A%5Cquad%20%5Cint%20f%5Cleft%28x%5Cright%29%5Cpm%20g%5Cleft%28x%5Cright%29dx%3D%5Cint%20f%5Cleft%28x%5Cright%29dx%5Cpm%20%5Cint%20g%5Cleft%28x%5Cright%29dx%5C%5C%3D%20%5Cpi%20%5Cleft%28%5Cint%20_1%5E3%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2dy-%5Cint%20_1%5E31dy%5Cright%29%5C%5C%5C%5C)

Our exact solution will be V = π(4In(3) + 8/3). In decimal form it will be about 22.2 however. Try both solution if you like, but it would be better to use 22.2. Your graph will just be a plot under the curve y = 2/x, the first graph.
John Frank Stevens, William C Gorgas and George Washington Goethals 1914 (opened)The building of the 50-mile-long Panama Canal was a collosal project, joining together the Pacific and Atlantic oceans by digging away 240 million metric tons of earth through the Isthmus of Panama. Almost as big a project was sanitising the area around the canal, which was mosquito infested and home to serious diseases like Malaria and Yellow Fever.
<span> In 1907 President Roosevelt appointed George Washington Goethals, a military engineer, as head of the project, and under his leadership the canal was finally completed in 1914, two years ahead of the 1916 target. Of benefit to the whole world, the achievement of the Panama Canal signalled American dominance in project management and engineering like no other project of the day.</span>
Answer:
"a quotient of a number and 6" refers to n6 or n÷6 .
Step-by-step explanation:
r. Let's let n be the "number". Therefore, "a quotient of a number and 6" refers to n6 or n÷6 .