Answer:
t = 4.17 hours
Explanation:
given,
The distance between Sun and Neptune, d = 4.5 billion Km
= 4.5 x 10⁹ Km
= 4.5 x 10¹¹ m
The velocity of light, c = 3 x 10⁸ m/s
The velocity is always equal to displacement by the time.
<em>V = d / t m/s</em>
∴ t = d / V
= 4.5 x 10¹¹ m / 3 x 10⁸ m/s
= 15,000 s
= 4.17 h
Hence, the time taken by the light rays to reach the Neptune is, t = 4.17 h
Answer:
The frictional force needed to overcome the cart is 4.83N
Explanation:
The frictional force can be obtained using the following formula:

where
is the coefficient of friction = 0.02
R = Normal reaction of the load =
=
= 
Now that we have the necessary parameters that we can place into the equation, we can now go ahead and make our substitutions, to get the value of F.

F = 4.83 N
Hence, the frictional force needed to overcome the cart is 4.83N
The answer is a property of density. The higher the density, the higher the pressure at the bottom.
Pressure = mass / Area. So given that the 4 samples occupy the same area at the bottom, the mass is going to be the determining factor. Per given volume, mercury has the largest mass. The answer is A
#8 positive kinetic energy
Answer:
Hindi ko alma yam among twang yan
Explanation:
aorry