Let:
x = cost of senior citizen ticket
y = cost of student ticket
4x + 5y = 102
7x + 5y = 126
4x + 5y = 102
4x = 102 - 5y
x = (102 - 5y)/4
x = 102/4 - 5y/4
7x + 5y = 126
7(102/4 - 5y/4) + 5y = 126
(714/4 - 35y/4) + 5y = 126
-35y/4 + 5y = 126 - 714/4
note:
-35y/4 = -8.75y
714/4 = 178.5
-8.75y + 5y = 126 - 178.5
-3.75y = -52.5
y = -52.5/-3.75
y = 14
x = 102/4 - 5y/4
x = 102/4 - 5(14)/4
x = 8
x = cost of senior citizen ticket = $8/ea
y = cost of student ticket = $14/ea
Answer:
3,750 cars.
Step-by-step explanation:
We are given that the equation:

Models the relationsip between <em>y</em>, the number of unfilled seats in the stadium, and <em>x</em>, the number of cars in the parking lot.
We want to determine the number of cars in the parking lot when there are no unfilled seats in the stadium.
When there are no unfilled seats in the stadium, <em>y</em> = 0. Thus:

Solve for <em>x</em>. Subtract 9000 from both sides:

Divide both sides by -2.4:

So, there will be 3,750 cars in the parking lot when there are no unfilled seats in the stadium.
Answer:
u(12-v)
Step-by-step explanation:
12u and -uv both have a factor of <em>u </em>in common, so we can pull it out to give us the factored expression u(12-v).
<em>Note on factoring:</em>
<em>Remember, it's just using the distributive property in reverse! We can get our original expression back by distributing the u to the 12 and the -v.</em>
Hold on need you omgg disnwkxjdjcjdjxuj ex djdusijddj