Answer: the statements in 1 and 2 are true of IR spectroscopic region.
1. In general, the IR FUNDAMENTAL region has a longer wavelength region than the region we call the ultraviolet (uv) region.
2. We can sense some of the frequencies of the FUNDAMENTAL region of the IR as heat
Explanation:
IR has energy value between 10^-5eV - 10^-2eVwhile
UV has energy value of 4eV - 300eV
IR has low photon energy and cannot alter atoms and molecules while UV has sufficient energy to iodize atoms therefore UV has a higher energy band.
Infrared light falls just outside the visible spectrum, beyond the edge of what we can see as red.
Answer:
B. The student chose the correct tile, but needs to flip the tile to make the units cancel
Explanation:
Based on the reaction:
2AgNO₃(aq) + Cu(s) → 2Ag(s) + Cu(NO₃)₂ (aq)
<em>2 moles of AgNO₃ react per mole of Cu producing 2 moles of Ag and 1 mole of Cu(NO₃)₂</em>
Thus, if you want to produce 6.75moles of Cu(NO₃)₂ you need:
= 13.50 moles of AgNO₃ are needed
Thus, if you analize the tile shown by the student:
<em>B. The student chose the correct tile, but needs to flip the tile to make the units cancel</em>
Answer:
5 1 2 4and 3 this is correct way
I would answer B!! But your guess is as good as mine!!
Answer:
1) Fe = 69.9%
O = 31.1%
2) H = 5.19%
O = 16.5%
N = 28.9%
C = 49.5%
Explanation:
One easy way to do percent compositions is to assume you have 100g of a substance.
1) Lets say we have 100g of Fe2O3.
The total molar mass would be:

The molar mass of the Fe2 alone is:

Thus, the grams of Fe2(out of a 100) could be calculated by multiplying 100g * the molar mass ratio of Fe2 to the whole:

Which is approximately 69.9%.
We can find the amount of O3 by simply subtracting, as the rest of the compound is made of O3. Thus, the % composition of O3 is 31.1%
You can then do this same process to the next question, getting us the following:
H = 5.19%
O = 16.5%
N = 28.9%
C = 49.5%