Answer: Molarity of
anions in the chemist's solution is 0.0104 M
Explanation:
Molarity : It is defined as the number of moles of solute present per liter of the solution.
Formula used :

where,
n= moles of solute
= volume of solution in ml = 100 ml
Now put all the given values in the formula of molarity, we get

Therefore, the molarity of solution will be 

As 1 mole of
gives 2 moles of 
Thus
moles of
gives =
Thus the molarity of
anions in the chemist's solution is 0.0104 M
Answer: -
The hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Explanation: -
Temperature of the hydrogen gas first sample = 10 °C.
Temperature in kelvin scale of the first sample = 10 + 273 = 283 K
For the second sample, the temperature is 350 K.
Thus we see the second sample of the hydrogen gas more temperature than the first sample.
We know from the kinetic theory of gases that
The kinetic energy of gas molecules increases with the increase in temperature of the gas. The speed of the movement of gas molecules also increase with the increase in kinetic energy.
So higher the temperature of a gas, more is the kinetic energy and more is the movement speed of the gas molecules.
Thus the hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Ideal Gas law PV=nRT
P- pressure(atm)
V-volume( liter)
R- gas constant
T- temperature(kelvin)
n - number of moles