Answer:
63. 55 amu
Explanation:
Copper is known to exist in two different isotopes which are Cu-63 and Cu-65.
Cu-63 has an atomic mass of 62.93 amu and it has an abundance of 69.15%.
Similarly,
Cu-65 has an atomic mass of 64.93 amu and it has an abundance of 30.85%
Therefore, using the weighted average mass method, the atomic mass of copper is:
Atomic mass of copper = (0.6915*62.93) amu + (0.3085*64.93) amu = 43.52 amu + 20.03 amu = 63.55 amu
Thus, the atomic mass of copper (express in two decimal places) is 63.55 amu
You need to find the whole molar mass of the compound using the periodic table to add the values.
Na2CO3= (2 x 23.0) + 12.0 + (3 x 16.0)= 106 g/mol
H2O= 10 x [ (2 x 1.01 ) + (16.0) ]= 180.2 g/mol
the total molar mass is 106 + 180.2 = 286.2 g/mol
the percentage of water you can find by doing "parts over the whole"
H2O%= 180.2 / 286.2 X 100= 63.0%
Answer:
19 °C
Explanation:
Step 1: Given and required data
- Mass of granite (m): 20 g
- Heat absorbed (Q): 300. 2 J
- Specific heat capacity of granite (c): 0.790 J/g.°C
Step 2: Calculate the temperature change (ΔT)
We will use the following expression.
Q = c × m × ΔT
ΔT = Q/c × m
ΔT = 300.2 J/(0.790 J/g.°C) × 20 g = 19 °C
Answer: D) protons.
The other option that would make the most sense would be electrons, however the mass of an electron is so small that is basically negligible, so it's not included in the atomic mass.