Answer:
The probability that at most 6 will come to a complete stop is 0.7857.
Step-by-step explanation:
Let <em>X</em> = number of drivers come to a complete stop at an intersection having flashing red lights in all directions when no other cars are visible.
The probability of the event <em>X</em> is, P (X) = <em>p</em> = 0.25.
The sample of drivers randomly selected is of size, <em>n</em> = 20.
The random variable <em>X</em> follows a binomial distribution with parameters <em>n</em> = 6 and <em>p</em> = 0.25.
The probability function of Binomial distribution is:

Compute the probability that at most 6 will come to a complete stop as follows:
P (X ≤ 6) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3)
+ P (X = 4) + P (X = 5) + P (X = 6)

Thus, the probability that at most 6 will come to a complete stop is 0.7857.
Answer:
14.1% to 1 decimal place.
Step-by-step explanation:
The amount left over = 320 - 275 = 45.
As a percentage of the original 320 this is 45 * 100 / 320
= 14.0625 %.
7. 21.39
8. 6
those are the only two i know
Do x divided by b on both sides and then add a on both sides. :)
Step-by-step explanation:
<u />
<u>1.Producción semanal de papas negras</u>:500kg x 12 semanas=6.000kg por 12 semanas de papa negra
<u>2.Producción semanal de batatas:</u> 600 kg x 12 semanas=7.200kg por 12 semanas de batata
<u>3.Producción total</u>: Para obtenerla producción total sumamos el total producido por las 12 semanas entre papa negra y batata.Entonces tenemos:
6.000kg de papa negra + 7.200 kg de batata=<u>13.200 kg </u>de producido total entre papa negra y batata por 12 semanas