Answer:
We are considering an Allene molecule here, CH2CCH2. To answer your question, NO, they don't have to lie on the same plane. The spatial arrangement between them is that the center carbon that forms these pi bind in the left and right are PERPENDICULAR to each other.
Explanation:
We see here that The terminal carbons are sp2 hybridized, and form three σ-bonds each which means that each terminal carbon has one unhybridized p-orbital. The central carbon atom is sp hybridized, and forms two σ-bonds which means it has two unhybridized p-orbitals. For better understanding, let's call these two orbitals px and py. Summarily, These orbitals are perpendicular to each other
Answer:
Of the following equilibria, only one will shift to the right in response to a decrease in volume.
On decreasing the volume the equilibrium will shift in right direction due to less number of gaseous moles on product side.
Explanation:
Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
Decrease the volume
If the volume of the container is decreased , the pressure will increase according to Boyle's Law. Now, according to the Le-Chatlier's principle, the equilibrium will shift in the direction where decrease in pressure is taking place. So, the equilibrium will shift in the direction number of gaseous moles are less.
On decreasing the volume the equilibrium will shift in right direction due to less number of gaseous moles on product side.
On decreasing the volume the equilibrium will shift in left direction due to less number of gaseous moles on reactant side.

On decreasing the volume the equilibrium will shift in left direction due to less number of gaseous moles on reactant side.

On decreasing the volume the equilibrium will shift in no direction due to same number of gaseous moles on both sides.

On decreasing the volume the equilibrium will shift in no direction due to same number of gaseous moles on both sides.
Answer:
9.93
Explanation:
Your value for Kw is incorrect. The correct value is 5.48 × 10^-14.
pH + pOH = pKw
3.30 + pOH = -log(5.84 × 10^-14) = 13.23
pOH = 13.23 - 3.30 = 9.93
The pOH of the solution is 9.93.
<span>There
are a number of ways to express concentration of a solution. This includes
molarity. Molarity is expressed as the number of moles of solute per volume of
the solution. We calculate as follows:
</span>
2.5 M HCl = 2.5 mol HCl / L soln
0.306 mol HCl / 2.5 mol HCl/L son = 0.1224 L soln needed
M1V1 = M2V2
18 M(V1) = 2.5 M(0.1224 L)
V1 = 0.017 L of the 18 M solution
The correct answer is: C. “Tina’s mother has severe FBAO. Tina should begin administering back blows followed by abdominal thrusts if the problem persists.”
Explanation: I did my study and took the test, this was right. :)