I don’t know the author or what book/literary work this is, but could be how proteins are produced.
Answer:
A. particles are the same.
Explanation:
Hello, since we are talking about the water, the molecules are quite equal.
Nonetheless, if you want to know it (because this is not in the answers), the particles move faster in the boiling water than in the ice, considering that in the boiling water there is a larger energy content, which allows the molecules to move faster (they "have" more energy). In addition, The molecules are closer in the ice because that is the only way for them to solidify (get together).
Best regards!
<u>Answer:</u> The below calculations proves that the rate of diffusion of
is 0.4 % faster than the rate of diffusion of 
<u>Explanation:</u>
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:

We are given:
Molar mass of 
Molar mass of 
By taking their ratio, we get:


From the above relation, it is clear that rate of effusion of
is faster than 
Difference in the rate of both the gases, 
To calculate the percentage increase in the rate, we use the equation:

Putting values in above equation, we get:

The above calculations proves that the rate of diffusion of
is 0.4 % faster than the rate of diffusion of 
The answer is 0.0171468704904. We assume you are converting between moles Mg(OH)2 and gram. This compound is also known as Magnesium Hydroxide. 1 mole<span> is equal to </span>1 moles<span> Mg(OH)2, or 58.31968 grams.</span>
Answer:
model of mountain formation
Explanation:
The formation of mountains takes millions of years. This formation of mountains involves so much processes that do not occur quickly.
Hence, a model that can adequately show something that happens very slowly is the model for the formation of mountains.