Answer:
"Subsoil" is the correct answer.
Explanation:
- The method of transforming sediments become rocky solids is considered as Lithification. The floor stratum or level below the upper floors at the base of the floor is a Subsoil.
- Sediments comprise materials particles like sand, pebbles, skeletons kind of bones as well as muck, that were transported and produced instead in water or perhaps wind someplace.
When you are asked a question like this, you can always ask yourself this question. Can I change it back after this change? For example, if you are burning wood, you cannot bring it back to wood after you burn it, therefore, it is a chemical change. However, if you boil and evaporate water, you can make the water condense again back into its liquid form. In this case, you cannot bring the tomato back to its raw state. Therefore, cooking raw tomatoes is a chemical change.
Answer:
lattice parameter = 5.3355x10^-8 cm
atomic radius = 2.3103x10^-8 cm
Explanation:
known data:
p=0.855 g/cm^3
atomic mass = 39.09 g/mol
atoms/cell = 2 atoms
Avogadro number = 6.02x10^23 atom/mol
a) the lattice parameter:
Since potassium has a cubic structure, its volume is equal to:
v = [(atoms/cell)x(atomic mass)/(p)x(Avogadro number)]
substituting values:
v =[(2)x(39.09)/(0.855x6.02x10^23)]=1.5189x10^-22 cm^3
but as the cell volume is
a^3 =v
cm
for a BCC structure, the atomic radius is equal to

Answer:
The α‑helix is held together by hydrogen bonds between the amide N−H and C=O groups.
Disulfide bonds stabilize secondary structure.
Explanation:
Proteins have primary, secondary, tertiary and quartinary structures.
The secondary structure of a protein is the regular, recurring sequence of amino acid in a polypeptide chain. Secondary structure of proteins give rise to the folding observed in the structure of a protein.
The major secondary structures of a protein are α-helices and β-structures.